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To evaluate the effectiveness of the HMM/MFCC approach to 
sound classification, we collected data representing examples of 
common kitchen sounds recorded in three different kitchens in 
relatively compact apartment settings. Sounds were recorded 
using two omnidirectional microphones and mixed together into 
a monophonic signal. Each sound was recorded using the native 
equipment (appliances, cookware, and so on) of the kitchen it was 
created in, and manually trimmed to minimize extraneous noise. 

Hidden Markov Models (HMMs) are a machine learning 
technique commonly used to classify data which changes over 
time. HMMs assume that the data are generated by a Markov 
process: a state machine in which the probability of 
transitioning to a given state depends only on the current state, 
and in which the output produced depends on which state the 
process is in. When modeling real-world data, the states of this 
process are “hidden” – we don't necessarily know anything 
about the internal structure of the object making a particular 
sound – so we must guess that there are some particular 
number of states, and use the statistical properties of the data to 
estimate the most likely set of probabilities for transitioning 
between them.

In our case, the data are recorded sounds. To extract the most 
relevant features of these sounds, we divide each sound into 
overlapping 25-millisecond windows and compute the Mel 
Frequency Cepstral Coefficients (MFCCs) of each window. 
MFCCs are commonly used in speech and environmental 
sound recognition applications, and are intended to produce a 
compact representation of the most perceptually important 
qualities of an audio signal. Applying the MFCC transformation 
condenses the relatively large number of audio sample points in 
a 25ms sound clip into a single small vector which represents 
higher-order features.

Using this processed data, we train an HMM for each class of 
sounds we want to distinguish. Within the HMM, the output of 
each state is modeled as a Gaussian mixture – a sum of multiple 
Gaussian distributions in the multidimensional feature-space – 
and the training process works by choosing the parameters of 
those mixtures, as well as the state-transition probabilities of the 
HMM, to maximize the likelihood that the model could have 
produced the data observed. Once a set of models is trained, 
unknown sounds can be classified by calculating the likelihood 
that the sound could have been produced by each model, and 
choosing the class whose model gives the highest likelihood.

We implemented a software system to perform this process 
using MATLAB along with Kevin Murphy's Hidden Markov 
Model Toolbox and the MIR Audio Toolbox developed by the 
University of Jyväskylä.

As people age, they often require some form of supervision in 
order to live safely in their own home. Computer technology can 
help to provide such supervision at lower cost and with fewer 
privacy concerns than other approaches. As part of a broader 
collaboration known as the ASSIST project, the UMass 
Computer Vision Lab is working to develop systems for 
monitoring and assisting elderly people living alone, in part by 
detecting abnormal behavior patterns which might be signs of 
trouble requiring intervention. This research explores the use of 
microphones and audio information to classify and understand 
the everyday sounds produced in a kitchen, with an application 
towards tracking behavior patterns. 

Class Description Total 
time 
(s)

Total 
examples

Mean 
time/example 
(s)

bag-rustle plastic bag rustling 150.16 42 3.58
boil water at full boil in a pot on the stove 160 30 5.33
cabinet cabinet door being closed (not slammed) 19.65 36 0.55
chop an onion being chopped on a cutting sheet on the 

counter
26.25 66 0.40

dishes ceramic dishes clinking against each other 50.55 48 1.05
fridgeclose refrigerator door being closed 11.15 31 0.36
fridgeopen refrigerator door being opened 13.45 32 0.42
mwavebeep button being pressed on the microwave 9.7 42 0.23
mwaveclose microwave door closing 15.32 34 0.45
mwaveopen microwave door opening 15.47 34 0.46
mwaverun microwave running on high 86.5 31 2.79
ovclose oven door being closed 22.45 30 0.75
ovopen oven door being opened 17.15 30 0.57
phone nearby phone ringing 51.2 26 1.97
pourwater water being poured into a glass 68.47 20 3.42
silence pure background noise 80 28 2.86
sinkfillglass faucet turned on medium, into a cup or glass 54 11 4.91
sinkrun faucet turned on high, into an empty sink basin 106 38 2.79
sizzle onions frying on the stove 270 52 5.19
speech single human speaker 94.4 35 2.70
stove-pot metal pot full of water being set down on a stove 

burner
17.27 37 0.47

We began by combining the sounds from all three kitchens into 
one large set. Half of the sounds (selected uniformly across 
kitchens and classes) were used for training, and the remainder 
were held out for testing. Classification accuracy on the test set 
was 95.1%, with the true class falling within the top three 
predicted classes 99.5% of the time. 

Class Recall Precision
1. bag-rustle 1.00 0.84
2. boil 1.00 1.00
3. cabinet 0.67 1.00
4. chop 0.82 1.00
5. dishes 0.96 0.89
6. fridgeclose 1.00 1.00
7. fridgeopen 1.00 0.89
8. mwavebeep 1.00 1.00
9. mwaveclose 1.00 0.89
10. mwaveopen 1.00 0.89
11. mwaverun 1.00 1.00
12. ovclose 0.93 0.88
13. ovopen 1.00 1.00
14. phone 1.00 1.00
14. pourwater 1.00 0.90
15. silence 1.00 0.93
17. sinkfillglass 0.83 1.00
18. sinkrun 1.00 1.00
19. sizzle 1.00 1.00
20. speech 1.00 1.00
21. stove-pot 0.84 0.94
AVERAGE 0.95 0.96

Mixed-kitchen results by class: recall and precision

The confusion matrix above 
visualizes the relationship between 
true class on the vertical axis and 
predicted class on the horizontal axis. 
The darkness of the shade indicates 
the number of sound samples which 
fit into a particular cell, so classes 
with fewer overall samples tend to 
have lighter shades.

Average cross-kitchen results by class: recall and precision

This confusion matrix uses the 
red, green and blue color 
channels to reflects tests on 
each of the three kitchens. As 
can be seen from the table at 
left, some classes (e.g. speech) 
appear to generalize quite well 
across kitchens, while others do 
not fare as well.

To evaluate generalization performance, we used all of the sounds 
from two of the three kitchens to train a classifier, and used it to 
classify all of the sounds from the third kitchen. This process was 
repeated using each of the three kitchens as the test kitchen, and 
the results averaged. Mean classification accuracy was 38.6%, with 
60.4% of sounds having the true class as one of the top three 
predicted classes.

Class Recall Recall (Top 3) Precision
1. bag-rustle 0.62 0.69 0.28

2. boil 0.00 0.20 0.00

3. cabinet 0.14 0.72 0.12

4. chop 0.47 0.77 0.60

5. dishes 0.83 0.94 0.73

6. fridgeclose 0.00 0.10 0.00

7. fridgeopen 0.13 0.50 0.12

8. mwavebeep 0.90 1.00 1.00

9. mwaveclose 0.03 0.26 0.10

10. mwaveopen 0.38 0.79 0.22

11. mwaverun 0.00 0.52 0.00

12. ovclose 0.00 0.17 0.00

13. ovopen 0.03 0.40 0.05

14. phone 0.00 0.00 0.00

15. pourwater 0.00 0.50 0.00

16. silence 0.00 0.46 0.00

17. sinkfillglass 0.00 0.09 0.00

18. sinkrun 1.00 1.00 0.97

19. sizzle 0.88 1.00 0.85

20. speech 1.00 1.00 0.61

21. stove-pot 0.27 0.59 0.22

AVERAGE 0.32 0.56 0.28

These results are not particularly impressive, but they are much 
better than random guessing. Accuracy does improve 
significantly if we are allowed to add one sample from each 
sound class in the test kitchen to our training set, in addition to 
the sounds from the other two kitchens (with the test set 
consisting of all sounds which were not used for training). 
Then 68.8% of sound samples are correctly classified, and the 
true class falls within the top three 87.5% of the time.

Confusion matrix for the case in 
which the training set is 
supplemented by a small number 
of samples from the test kitchen, 
again with the red, green, and 
blue channels corresponding to 
tests on each of the three 
kitchens.

Classifying individual sounds is the first step towards being able 
to extract behavior information from recordings of kitchen 
activity. We recorded several sequences of actions in each 
kitchen, and have experimented with several approaches for 
classifying them. 

We perform naïve 
segmentation using a 
volume threshold, 
assuming that our  
sounds of interest 
are separated by 
silence. We can then 
classify each sound 
holistically as before, 
or we can split it 
into smaller 
windows (200ms, in 
this case), classify 
each window, and 
use the most 
common result to 
label the entire 
sound. Both 
methods are shown 
in the chart on the 
right (green shading 
is correct; red 
denotes an error).

We have shown that a relatively simple, standard approach is 
capable of identifying kitchen sounds with good accuracy, given a 
well-labeled training set which includes sounds from the kitchen 
in which it is used. Performance degrades dramatically when the 
system is applied to a kitchen on which it has not been trained, 
although several classes (e.g. speech, sizzle, sinkrun, mwavebeep, 
and dishes) seem to maintain relatively high accuracy in such 
circumstances, so it may still be possible to recognize a limited 
subset of sounds in unfamiliar kitchens. Adding in even a small 
amount of training data from the kitchen being tested improves 
results significantly.

Initial tests on simple sequences of actions show promising 
results using naïve segmentation by silences, but a more 
sophisticated segmentation method will be necessary to handle 
real-world data in which events are not always cleanly separated 
by silence. In addition, since the most relevant sound classes are 
likely different in every kitchen, it might be productive to explore 
unsupervised clustering or semi-supervised learning methods 
which could alleviate the need for a labor-intensive manual 
training process and allow the system to automatically refine its 
responses based on experience.
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