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Introduction

* Global seismic monitoring aims to recover the time, location, depth, and
magnitude for all seismic events worldwide.

* We propose a new approach to monitoring, using Bayesian inference in a
joint statistical model of seismic events and seismic signal traces, with the
goal of improving event detection and localization.

e Our system is currently trained and evaluated on data from the
International Monitoring System (IMS) established by the Comprehensive
Nuclear-Test-Ban Treaty (CTBT).

IMS network:
Blue dots and
triangles are
primary seismic
stations.

e The IMS’s current automated system (SEL3) detects 69% of real events and
creates twice as many spurious events.

* Human analysts find more events, correct existing ones, throw out spurious
events, and generate the LEB reference bulletin, considered reliable for
events above magnitude 4.0 (about 1 kiloton).

 NET-VISA is a detection-based Bayesian monitoring system whose
performance is limited by the classical, bottom-up, threshold-based
detection algorithms used in station processing. It misses about 2-3 times
fewer events than SEL3.

* SIG-VISA, a signal-based system, uses generative models that span the
range from events to waveform traces. This approach has several qualitative
advantages over NET-VISA, with the potential for significantly improved
sensitivity and localization performance.

Signal-Based vs.
Detection-Based Monitoring

events Y 21 " —
: model :
inference
| . I model
SEL3 [ inference |
;NET—VISA :
detections I
l
station SIG-VISA I
waveform processing 4
signals

Bayesian monitoring with a generative approach:
P.(world) describes prior probability for what is (events)
Po(signal | world) describes forward model
(propagation, measurement, etc.)

Detection-based Bayesian monitoring:
P(world | f (signal)) « P, (f (signal) | world) P,(world)
where f (signal) = set of all detections
Signal-based Bayesian monitoring:
P(world | signal) « P_(signal | world) P,(world)

Signal Envelope Model

SIG-VISA is a probabilistic generative model of seismic event origins,
propagation, and observed waveform envelopes, including event signals
along with station background noise:

Seismic Event Seismic Event

T~ "\

Path-specific signal T'ravel T.ravel Path-specific signal
characteristics times times characteristics

Station Statl.on
1 noise 2 noise

: Station 1 Station 2 "
sighal envelope signal envelope

The signal model encodes a distribution over waveform envelopes at
each station given parameters for all hypothesized events.

50 100 150 200 250 300 50 100 150 200 250 300
) Time (s)

Left: An observed envelope Right: A synthetic envelope
showing the P and S arrivals and generated from the template
subsequent coda decays. The red with an autoregressive

line indicates the template fit. modulation process.

SIG-VISA: Signal-Based Vertically Integrated Bayesian Monitoring
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Phase Envelope Model

Each arriving phase is modeled as a parameterized shape
template, multiplied by a random modulation signal.

Event
(lon, lat, depth, time,
mb, source type)

Parameterized L amplitude
shape template ( arrival time )

X
Modulation
arameters
Modulation signal P
+
Random

background —
noise WWWWMW -
(autoregressive

process)

Observed signal

Shape Parameter Models

Shape templates are described by four parameters:

onset

- Decay rate
/ (exponential)

amplitude

arrival

time
These parameters are modeled, conditioned on an event hypotheses, by a
combination of physical and probabilistic models. The probabilistic models

combine simple parametric relationships along with a nonparametric
(Gaussian process / kriging) component to capture local structure.
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Travel-time residuals (from IASPEI Onset period: modeled in log
model): modeled by distance- scale, as linear in event body
independent Laplace distribution. wave magnitude.
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Amplitude transfer function (from Coda decay rates: modeled in log
scale, as linear in event-station
distance and event magnitude.

Brune/Mueller-Murphy source
model): modeled as nonlinear in
event-station distance.
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Above: nonparametric Gaussian process (kriging) model of amplitude transfer
function. a) Training events colored by transfer function, b) basic kriging
model, c) hybrid model combining local structure from kriging with the
overall distance-decay relationship from parametric regression.
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modeled hierarchically, constraining
the models at individual stations
towards a latent global prior.

Right: improvements in log-
likelihood on a validation set from
the global hierarchical model, -
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Sensitivity

A station provides statistical evidence for an event if its signal is more
probable under the hypothesis of that event than under a noise model.

th : 0.14
(10,.50, 99 ) Percentlle§ of the'# of — e
stations yielding detections/evidence at 012 LEB associations
. . . . ) — IMS detections
time of P wave arrival (using vertical o0f |
channel, 2-3Hz signals), across 212 test 0.08
events with m, €[3.5, 4.0]: 0.06
e |MS detections: 4, 9, 19 0.04
* SEL3 associations: 2,4, 13 oozl
* LEB associations: 3, 6, 17 000
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* SIGVISA: 14, 20, 27 - stations
) Normalized SIG-VISA evidence
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. 0.04
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2009 DPRK event: SIG-VISA finds statistical evidence for P arrivals at 53
stations, vs 42 stations with IMS detections. Top: examples of stations
providing statistical evidence, but with no IMS detection. Bottom: stations
with IMS detections missed by SIG-VISA.
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Inference

SIG-VISA uses Markov Chain Monte Carlo (MCMC) to sample from the
posterior distribution over event hypotheses conditioned on observed
signals. Move types include:

 Template parameter moves tweak the shape parameters describing a
template to better match the signal.

* Event attribute moves modify the location, depth, time, and magnitude of
an event hypothesis to better fit the templates associated with that event
at stations across the network.

* Template birth/death/split/merge moves create and destroy shape
templates, not associated with any particular event phase, to explain a
signal spike. New templates are proposed with probability proportional to
the height of the observed envelope, minus envelopes from all current
templates.
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Example of template birth moves finding an explanation for an observed signal. The
final frame shows the result after several additional template parameter moves.

Event birth/death moves propose new hypothesized events to explain

unassociated templates.

* Event locations are proposed by Hough transform, using a 3D (lon, lat,
time) accumulator array.

* Weights of accumulator bins are sums of “votes” from all current
unassociated templates; each template votes for all bins in its
backprojected space-time cone.
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Newly-born events generate templates for all appropriate phases at all
stations. These templates replace unassociated templates with probability
pe,p(Th)

pu (T;)

or are created anew with probability p(create T') oc 1,

p(associate T;) o

When an event is killed, its generated templates are similarly either killed or
retained as unassociated templates.

Localization: 2009 DPRK Event

“, CTBTO

PREPARATORY COMMISSION

Modeling Array Stations

Using a network of 105 stations, and a restricted model (only P/Pn phases,
2-3Hz frequency band, using only the reference station at each array), we

infer a mean location of 129.20° E, 41.33° N for the 2009 DPRK test, 13 km
from the REB reference location.

Below: (/eft) Posterior location density from 10000 MCMC samples, with REB
location marked in blue. (right) Samples showing posterior uncertainty in
origin depth, magnitude, and time.
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Probabilistic Waveform Matching

Waveform shape is known to be highly repeatable across events with the
same location and source mechanism (Thorbjarnardottir and Pechmann,
1987; Harris, 1991).

SIG-VISA captures this effect by replacing the independently sampled
modulation signal with a signal conditioned on the event location, causing
nearby events to generate correlated waveforms:

Synthetic reference envelope
(red) and a sampled envelope
(blue) from a Gaussian-process
generative model for a nearby
event location.

The same reference envelope
(red) and a sampled envelope
(blue) from a distant event
location.
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This causes a statistical “waveform matching” effect to emerge from
inference in the probabilistic model.

Modulation signals are represented parametrically as a sum of basis
functions (e.g. Fourier or wavelet basis), with coefficients modeled by a
spatial Gaussian process.
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Above: power spectra for three

waveforms from an aftershock sequence

in Tibet, showing a doublet pair.

Right: Posterior location density for IMS

event 4689462, using a model trained on

signals including the doublet 4686108,

peaking 8km from the reference location

(green star).
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Wavelet signal representations retain time-domain locality, allowing for
greater modulation uncertainty in later parts of the signal, as the signal
approaches the noise floor, while maintaining a compact representation.
We are currently exploring probabilistic models of wavelet representations.

Doublets, superimposed Wavelet representations (Daubechies basis)
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Our standard model assumes that signals are independent at each station,
conditioned on event attributes, but this is false for signals at array elements,
which are empirically correlated. We remove the independence assumption
by jointly modeling each template parameter across array elements with a
single Gaussian process (GP), thus extending the existing 3D event location
space to a 6D station-event pair.

Points in the 6D space are correlated by a squared-exponential covariance
function defined by four length scale parameters: surface distance length
scale for station and event, and depth/elevation length scales for station and
event. We learn the optimal length scales for each GP by gradient ascent on
the marginal likelihood of the training data.

To evaluate the effectiveness of the joint array model, we perform
‘probabilistic beamforming’ for new events using 2-3Hz filtered signals from
all array elements: we compute the event azimuth having highest posterior
probability under the model, conditioned on the signals at array elements.
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Above: histograms comparing the errors in modal azimuths from the SIG-VISA
joint array model, with the errors in azimuths recorded by IMS station
processing at two arrays, FINES and ASAR. The SIG-VISA model gives a sharper
peak around O error than IMS station processing at FINES, though not at
ASAR. In both cases it produces more large errors than IMS station
processing.

Below: comparisons of the joint array model to IMS station processing and to
the independent array model, comparing the median error in predicted
azimuth as well as likelihood of the reference azimuth. Likelihoods for the
station processing were approximated by a Gaussian fit to the residuals. The
joint array model is a significant improvement over an independent model,
and competitive with IMS station processing.

Median of prediction errors Negqléive Mean Log Likelihood of True Event Azimuth under Gaussian Model
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Conclusions

e Bayesian monitoring provides a unified framework for a modular, next-
generation monitoring system, integrating physics-based seismological
models with probabilistic reasoning for principled handling of noise and
uncertainty.

* Explicit modeling of seismic signals eliminates detection threshold effects
and allows incorporation of detailed signal features.

* Preliminary results are competitive with existing systems; we expect
performance to improve as inference is scaled up and model extensions
(array stations, multiple phase types, improved models of modulation
signals) are incorporated.

* Nonparametric spatial models of signal modulation enable the unification
of waveform cross-correlation methods with an end-to-end monitoring
system.
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