
Transfer and Structure Learning in

Markov Logic Networks

by

David A. Moore

Andrea Danyluk, advisor

A thesis submitted in partial fulfillment

of the requirements for the

Degree of Bachelor of Arts with Honors

in Computer Science

WILLIAMS COLLEGE

Williamstown, Massachusetts

ii

Acknowledgements

I’d like to thank my advisor, Andrea Danyluk, for all of her support, advice, and insight, as

well as for her willingness and miraculous ability to find the time to supervise a thesis while

simultaneously serving as the Dean of the Faculty. I’d also like to thank Tom Murtagh, my

second reader, for his helpful comments and insightful questions. I’m especially grateful to

Mary Bailey for setting up the cluster on which all of my experiments were run (and for her

foregiveness of my constant abuse of the Unix lab machines), and to Jeannie Albrecht for

donating large quantities of high-powered hardware to the effort. Many thanks to Jesse Davis

for providing me with his implementation of DTM as well as the WebKB and Yeast datasets,

and for giving generously of his time through many helpful conversations. Last but not least,

I’d like to thank my parents for their love, encouragement, and support, without which this

thesis would never have been written.

Abstract

Markov logic networks are a recently developed knowledge representation capable of com-

pactly representing complex relationships and handling uncertainty in a principled manner.

The deep transfer algorithm of Davis and Domingos proposes a method for learning the

structure of an MLN by incorporating cross-domain knowledge — for example, using the

relationships between yeast proteins to inform predictions about relationships in the movie

business. This thesis explores several questions related to this algorithm and to cross-domain

transfer in general. I first develop methods for simultaneous transfer from multiple domains,

and propose that much of the success of deep transfer may be explained by a small number

of commonly occurring structural properties, e.g. symmetry and transitivity. I then demon-

strate empirically that deep transfer often performs best when using the target domain as its

own transfer source, e.g. the most effective way to predict relationships in the movie busi-

ness is to examine other relationships in the movie business. This suggests a reinterpretation

of the deep transfer algorithm as a method for single-domain structure learning. Finally, I

describe a new algorithm for cross-domain transfer which transfers a more specific form of

structure than the second-order cliques used by Davis and Domingos, and show empirically

that my approach performs competitively to the deep transfer algorithm, despite using a less

sophisticated form of learning in the source domain.

Contents

List of Tables v

Glossary vii

1 Introduction 1

1.1 Markov Logic Networks . 3

1.2 Deep Transfer . 3

1.3 Motivation and Goals . 4

1.4 Contributions and Organization . 4

2 Background and Related Work 7

2.1 Logic and Terminology . 7

2.2 Markov Logic Networks . 8

2.2.1 Interpretation as Markov Networks . 10

2.2.2 Inference . 13

2.3 Learning in MLNs . 13

2.3.1 MSL . 14

2.3.2 LHL . 16

2.3.3 Others . 17

2.4 Deep Transfer in Markov Logic Networks . 17

2.4.1 Clique Evaluation . 19

2.4.2 Performing Transfer . 20

2.4.3 Sources of Transfer . 21

2.4.4 Other Transfer Methods for MLNs . 22

iii

CONTENTS

3 Domains and Methods 23

3.1 Methods . 23

3.2 Domains and Datasets . 24

4 Preliminary Questions 27

4.1 Transfer from Multiple Sources . 27

4.1.1 Experiments and Results . 28

4.1.2 Discussion . 30

4.2 Universal Transfer . 30

4.2.1 Experiments and Results . 32

4.2.2 Discussion . 33

5 Self-Transfer: DTM as a Structure Learner 35

5.1 DTM for Structure Learning . 36

5.2 The Self-Transfer/CSGL Algorithm . 37

5.3 Experiments and Results . 38

5.4 Discussion . 41

6 Simple Transfer via Second-Order Formulas 45

6.1 Alternative Representations for Transfer . 45

6.2 The Simple Transfer Algorithm . 46

6.3 Experiments and Results . 48

6.4 Discussion . 52

7 Conclusions and Future Work 53

7.1 Future Work . 54

A Learned MLNs 57

A.1 IMDB . 58

A.2 UW-CSE . 59

A.3 WebKB . 60

A.4 Yeast Protein . 61

References 65

iv

List of Tables

2.1 Example Markov Logic Network (Mihalkova, 2009) . 9

2.2 The clausal-form conversion of the MLN of Table 2.1, lifted first into second-order logic,

then into second-order cliques, illustrating three levels of abstraction in DTM. 18

3.1 Datasets used. 24

3.2 Predicates and object types for each dataset. Plus signs indicate terms which are allowed

to appear as constants in learned clauses. 26

4.1 AUC of the top and common cliques for each two-source transfer scenario, using greedy

transfer with refinement. Domains are labeled in the column headings by the first letter

of their full names. 29

4.2 Candidate cliques for a universal transfer source. 31

4.3 Transfer from common cliques. 32

5.1 Results for DTM (with refinement) including self-transfer cases (i.e. CSGL-R), transferring

the top 10 cliques. 39

5.2 Results for CSGL (no refinement; transferring the top 5 and top 10 cliques) vs. MSL. . . 40

5.3 The top ten cliques in each domain. 41

6.1 Results for STM with greedy selection (STM-G), including self-transfer cases. 49

6.2 Results for STM with greedy selection and refinement (STM-R), including self-transfer cases. 50

A.1 Cliques learned using MSL on the first three folds of the IMDB dataset. 58

A.2 Cliques learned using CSGL on the first three folds of the IMDB dataset. 58

A.3 Cliques learned using MSL on the first three folds of the UW-CSE dataset. 59

v

LIST OF TABLES

A.4 Cliques learned using CSGL on the first three folds of the UW-CSE dataset. 59

A.5 Cliques learned using MSL on the first three folds of the WebKB dataset. 60

A.6 Cliques learned using CSGL on the first three folds of the WebKB dataset. 61

A.7 Cliques learned using MSL on the first three folds of the Yeast Protein dataset. 62

A.8 Cliques learned using CSGL on the first three folds of the Yeast Protein dataset. 63

vi

Glossary

AUC Area Under the precision-recall Curve. Mea-

sures the extent to which a learned model is

able to correctly classify the ground atoms of

a dataset.

CLL Conditional Log-Likelihood. Measure the ex-

tent to which a learned model predicts accu-

rate probabilities for the ground atoms of a

dataset.

CSGL Clique Scoring with Greedy seLection. A vari-

ant of the DTM algorithm used for structure

learning, consisting of DTM applied without

refinement within a single domain.

DTM Deep Transfer for Markov logic networks. A

method for “deep” transfer learning which ex-

plicitly represents domain-independent knowl-

edge as second-order cliques.

ILP Inductive Logic Programming. A collection

of learning methods used to generate knowl-

edge bases, consisting of formulas of first-order

logic, which model a given dataset.

LHL Learning through Hypergraph Lifting. A re-

cent MLN structure learning algorithm which

shares many traits with CSGL.

MLN Markov Logic Network. A knowledge repre-

sentation providing a probabilistic extension

of first-order logic.

MSL MLN Structure Learning. A common struc-

ture learning algorithm for MLNs; used as a

baseline for transfer.

SRL Statistical Relational Learning. The general

study of representations and learning meth-

ods for handling uncertainty in relational do-

mains, in particular including the development

of MLNs and associated algorithms.

STM Simple Transfer for Markov logic networks. A

method for “deep” transfer learning which ex-

plicitly represents domain-independent knowl-

edge as second-order formulas.

TAMAR Transfer via Automatic Mapping And Revi-

sion. A transfer learning method which cre-

ates a direct mapping between the predicates

of different domains.

WPLL Weighted Pseudo Log-Likelihood. An approx-

imation of likelihood, used as a metric during

the optimization phase of MLN structure- and

weight-learning algorithms.

vii

GLOSSARY

viii

1

Introduction

Traditional inductive learning derives propositional knowledge from propositional data. If we want to

predict whether it will rain today (the proposition Raining), we might start by noting various aspects of

the current weather, for example whether it is Cloudy, Humid, Warm, and so on. Taken together, the truth

values of these propositions comprise a feature vector for which we want to predict a binary classification;

namely, will it rain? Given a set of data points accumulated over many days of weather observations,

there exist a wide variety of methods for learning how to make this prediction. Such methods often

attempt to learn a probabilistic model: we want to predict the probability of Raining, conditioned on

the evidence of the other features. If today is cloudy, and cloudy days have historically tended also to be

rainy, then today might also be rainy.

Propositional learning methods have achieved great success in part because many learning tasks

can be easily represented in propositional form. Often, however, we are presented with data that is

inherently relational, where the examples are not independent and we need to use our knowledge about

the relationships and dependencies in the data to make accurate predictions. For example, the essential

insight of Google’s PageRank algorithm (Page et al., 1998) was to realize that determining the relative

authority of a web page requires an understanding of that page’s place in the link structure of the Web

as a whole; to predict relevance it is necessary to consider the relationships between pages in addition to

their individual contents.

Networks are inherently relational — if we know something about one component of a network, we can

make predictions about the components it is connected to. For example, web pages tend to link to other

pages which cover similar topics. This idea extends beyond the Internet: social networks (both online and

1

1. INTRODUCTION

offline), food webs, political alliances, sensor networks, citation graphs, gene regulatory networks, buyer-

seller relationships in a market, etc. are among the many systems which can be viewed with a network

structure and reasoned about relationally (though the precise nature of the relationships is different in

every case). Since many of these systems are generated by complex underlying phenomena, it is often

difficult for a human knowledge engineer to precisely specify all of the rules necessary to reason about

the relationships within any particular domain, especially if the domain is one where people have few

pre-existing intuitions (e.g. predicting the interactions between yeast proteins). By sifting through data

to uncover these rules automatically, machine learning techniques can help us reason and solve problems

in an increasingly interconnected world.

One approach to capturing these sorts of relationships in data is to use first-order logic as the knowl-

edge representation, since this allows the creation of predicates expressing arbitrary relationships between

objects in the world. Logical representations of relational properties are preferable to graph-based ap-

proaches because logic expresses the general structure of relationships and does not require a commitment

to some particular set of objects as the nodes of a network. For example, the formula Friends(x,y) ∧

Friends(y,z) =⇒ Friends(x,z) expresses a general constraint on friendship relationships, i.e. that

they must be transitive, which it asserts to hold for any friendship graph regardless of the specific people

involved. Inductive logic programming (ILP) (Lavrac and Dzeroski, 1994) learns logical hypotheses using

the language of Horn-clause logic, a restricted form of first-order logic. Given a set of facts about the

world, ILP searches for a set of formulas which fit the known facts as closely as possible; once found, the

formulas can then be used to infer the truth values of arbitrary statements. In this way the hypotheses

learned by an ILP system divide the world neatly into true statements, false statements, and statements

for which the system is unable to make a predication.

A major drawback to logic-based representations is that logic taken alone is extraordinarily brittle; a

single counterexample renders a formula just as false as a million counterexamples would. While this is a

valuable trait in mathematics, where one contradiction renders an entire system hopelessly inconsistent, it

is less helpful when using logic to model empirical data, which is often noisy, and which more importantly

often contains useful tendencies which do not quite rise to the level of infallible mathematical truth. For

example, the formula describing the transitivity of friendship (given above) does not hold universally;

there are many counterexamples. However, it is still true with some probability greater than chance,

and we would like to be able to represent this sort of tendency. This is the goal of statistical relational

learning: to find approaches which allow us to represent relationships probabilistically, and therefore

bring to bear the power of statistical learning in relational domains.

2

1.1 Markov Logic Networks

1.1 Markov Logic Networks

Many approaches to statistical relational learning have been proposed (see Getoor and Taskar (2007)),

but this thesis is concerned primarily with the particular framework known as Markov logic networks

(Richardson and Domingos, 2006), discussed more fully in Chapter 2. A Markov logic network (MLN)

is simply a set of first-order logical formulas with associated weights. Though the weights are not

probabilities themselves, they can be interpreted as inducing a probability distribution over the set of

all possible worlds, where a world is an assignment of truth values to every grounded predicate in the

domain. The interpretation stems from viewing the MLN along with a set of domain constants as defining

a Markov network (Pearl, 1988), a form of probabilistic graphical model. Thus an MLN allows us to

assign probabilities to arbitrary logical statements, by summing the individual probabilities of all possible

worlds in which each statement holds. Although this form of exact inference is intractable in practice,

approximate inference can be performed efficiently (Richardson and Domingos, 2006).

Learning an MLN representation for a domain can be reduced to two problems: weight learning and

structure learning. Weight learning considers a set of formulas and determines appropriate weights from

the available data, while structure learning attempts to find formulas which capture useful information

about the relationships which hold within a domain. For example, given data describing a social network,

structure learning might generate the formula Friends(x,y) ∧ Friends(y,z) =⇒ Friends(x,z)

which asserts the transitivity of friendship; we could then apply weight learning to quantify precisely to

what degree this formula actually holds in our data.

1.2 Deep Transfer

Learning structure in general domains is a difficult but important problem, for which several algorithms

have been proposed, including MSL (Kok and Domingos, 2005), BUSL (Mihalkova and Mooney, 2007),

ISL (Biba et al., 2008), and LHL (Kok and Domingos, 2009). One approach to improving structure

learning is to apply transfer learning (surveyed in Torrey and Shavlik (2009)). In general, transfer

learning attempts to use knowledge gained in the course of learning to perform a source task to aid the

learning process for a related target task. Davis and Domingos (2009) introduce an algorithm known as

deep transfer, or DTM, which transfers MLN structure across domains. DTM abstracts the first-order

formulas describing a source domain into second-order cliques, which act as templates for the formulas of

the domain and represent particular types of higher-level structural regularities. These cliques constitute

3

1. INTRODUCTION

a form of domain-independent knowledge which can be used in the target domain to bias the structure

search process towards more fruitful areas of the search space.

Davis and Domingos demonstrate empirically that their algorithm indeed does often lead to improved

structure learning performance, as measured by the ability to predict the truth values of unknown propo-

sitions from biological, hypertext, and social domains. They further claim that the effectiveness of deep

transfer is validated by the intuitively plausible nature of the regularities it discovers: the top-ranking

cliques tend to represent well-known relationships such as symmetry, transitivity, and homophily (the

“birds of a feather flock together” property, which states that objects sharing similar properties tend to

be related in some way).

1.3 Motivation and Goals

Although deep transfer has been shown to be effective in some cases at improving structure learning

performance, the algorithm has not been extensively studied and many aspects of its behavior are poorly

understood. Questions include:

• Is it useful to transfer from multiple domains at once?

• Since it appears that a small set of cliques scores highly across a wide set of domains (as mentioned

above, most of these cliques represent intuitive regularities such as transitivity), how much does the

choice of a particular source domain matter? Could it be that there is some set of cliques which

are widely useful across many domains?

• If source domain choice does matter, how can we select the best domain to transfer from?

• Can DTM be modified to transfer knowledge in forms other than second-order cliques, and is it

useful to do so?

This thesis attempts to shed light on these questions.

1.4 Contributions and Organization

This main contributions of this thesis are as follows. First, I consider several methods for combining

cliques from multiple domains and evaluate their effectiveness. Additionally, I try two approaches for

4

1.4 Contributions and Organization

combining cliques from four different domains in an attempt to find a single set of widely useful cliques,

with some (qualified) success.

Next, motivated by the problem of finding the best source domain for transfer, I propose the method

of self-transfer, which applies the DTM algorithm using a single domain as both the source and target of

the transfer process. The intuition is that no other domain is as similar to a domain as it is to itself. I find

that self-transfer leads to learning performance generally equalling or exceeding the best cases of transfer

from external domains. This suggests that we can think of DTM as performing a novel form of structure

learning, which I call “clique scoring with greedy selection” (CSGL). I compare CSGL to cross-domain

DTM as well as to other algorithms for structure learning in MLNs, and point out similarities between

CSGL and another recent approach based on hypergraph pathfinding (Kok and Domingos, 2009).

Finally, I develop a new algorithm for transfer learning in MLNs which uses second-order formulas

rather than cliques as the domain-independent knowledge representation; I call this algorithm “simple

transfer”. I evaluate this method empirically and discuss the relative merits of this approach compared

to those of deep transfer.

Chapter 2 discusses related work and provides a detailed introduction to Markov logic and the deep

transfer algorithm. Chapter 3 describes the datasets and experimental setup used in the chapters which

follow. Chapter 4 discusses methods for simultaneous transfer from multiple sources, and attempts to find

a set of cliques which are useful as “universal” transfer sources. Chapter 5 discusses self-transfer/CSGL

and evaluates it against other structure learning approaches. Chapter 6 introduces simple transfer and

tests it empirically as well. Chapter 7 states conclusions and describes ideas for future work.

5

1. INTRODUCTION

6

2

Background and Related Work

As introduced in the previous chapter, statistical relational learning (SRL) aims to develop learning al-

gorithms capable of dealing with uncertainty in relational domains. This is an important goal, because

many real-world learning tasks are neither clean nor propositional. Techniques for SRL have generally

involved some combination of ideas from probability theory and logic, where probability is used to reason

about uncertainty in a principled way, and logic provides a tool to represent complex abstract relation-

ships. This thesis focuses on one particular representation, Markov logic networks (MLNs), and several

algorithms associated with them.

2.1 Logic and Terminology

In first-order logic, a constant is a symbol which refers to a particular object in the domain, e.g. Brando

might refer to Marlon Brando in a movie domain. This thesis makes the unique names assumption that

different constants never refer to the same object. Variables stand in place of constants for the purpose

of quantification; a term is a constant or a variable. A predicate represents a relation on objects in the

domain and is either true or false for any given list of objects; the arity of a predicate is the number of

arguments it takes (equivalently, the number of objects that it relates). Predicate arguments are typed.

An atom is a predicate applied to a list of terms, and a ground atom is an atom in which all of the

terms are constants. A clause is a disjunction of atoms, any of which may be negated; a formula may

also include conjunction and implication as well as universal and existential quantifiers. In this thesis,

standalone clauses are assumed to be implicitly universally quantified. A knowledge base is a set of

formulas or clauses. A ground formula is a formula in which all of the atoms are ground atoms.

7

2. BACKGROUND AND RELATED WORK

2.2 Markov Logic Networks

Traditional probabilistic models — including graphical models such as Bayesian or Markov networks

(Pearl, 1988) — describe the joint probability distribution of a set of propositions. In other words, given

some set of n propositions, e.g. Cloudy, Humid, Raining, etc., these models assign a probability to each

of the 2n possible states: cloudy, humid, and raining; cloudy humid, and not raining, and so on. From the

joint distribution, we can calculate a probability for any logical formula by summing over the probabilities

of the states in which that formula holds true. A representation of the joint distribution therefore allows

us to answer arbitrary questions about the set of propositions, e.g. what is the probability that it is

Raining given that it is Cloudy?

Any relational domain can be propositionalized, by first choosing a set of constants representing some

set of objects taken from the domain, and then considering the set of all ground atoms which may be

created by instantiating the predicates of the domain with the chosen constants in all possible ways.

Each ground atom can then be viewed as a proposition, and the relationships between ground atoms

modelled as described above. For example, in a social network domain this would mean choosing a fixed

set of people and examining only the attributes of and relationships between those particular people.

However, because the model is specific to the particular set of constants chosen, this approach captures

only a slice of the overall relational structure. For example, if we consider a social network domain

and take as our objects the members of the US Senate, then a propositional approach would model

the probability that (for example) John Kerry and Lindsey Graham are friends (i.e. the proposition

Friends(Kerry, Graham)), but would have nothing whatsoever to say about the members of the House

of Representatives. This is because such models define the probabilities of particular propositions, but the

higher-order tendencies we want to model—perhaps legislators who have written bills together are more

likely to be friends—can only be expressed in a representation which explicitly generalizes the constants,

such as first-order logic.

Markov logic networks (MLNs) (Richardson and Domingos, 2006) aim to provide a solution to this

problem, by generalizing both probabilistic graphical models and first-order logic to create a flexible

representation for statistical relational knowledge. Instead of representing the joint distribution over a

set of propositions, an MLN can be seen as defining a template for creating such a distribution, given any

particular set of constants (the resulting propositional distributions are represented as Markov networks;

see Section 2.2.1).

8

2.2 Markov Logic Networks

0.7 Actor(A) =⇒ ¬Director(A)
1.2 Director(A) =⇒ ¬WorkedFor(A,B)
1.4 Credits(T,A) ∧ WorkedFor(A,B) =⇒ Credits(T,B)

Table 2.1: Example Markov Logic Network (Mihalkova, 2009)

An MLN consists of a set of first-order logical formulas with weights attached. These formulas signify

general regularities which we expect to remain relevant for any reasonable sampling of objects from

the domain. For example, Table 2.1 defines a simple MLN over a movie domain which asserts several

tendencies: actors are usually not also directors, directors usually don’t work under anyone else, and if a

person’s name appears in the credits of a film, then the people they’ve worked under will generally also

appear in the credits of that film.

Given a world defined by some particular set of objects from the domain, the formulas and weights

of an MLN serve to define a probability distribution over all possible states of that world (where a state

is just an assignment of truth values to all possible ground atoms formed using that set of constants), in

which the probability of any particular state depends on how many formulas it satisfies and the weights

of those formulas. Formally, the probability of any particular state x is given by

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)
(2.1)

(Richardson and Domingos, 2006) where wi is the weight of the ith formula and ni(x) gives the number

of true groundings of the ith formula in state x, i.e. the number of distinct ways in which the variables

in the formula can be substituted by constants in order to form a true statement. Z is a normalization

term equal to the sum over all world states Z =
∑
y exp (

∑
i wini(y)). Note that the weights are not

themselves probabilities, although we use them to calculate probabilities. The weight of a formula can be

interpreted as the difference in log probabilities (i.e. the log odds) between states in which the formula

is true and those in which it is not, all else held equal. Thus, formulas with positive weights serve to

increase the probability of the states in which they are satisfied, formulas with negative weights decrease

the probability of states in which they are satisfied, and zero-weight formulas have no effect. Negating

a formula is equivalent to flipping the sign of its weight (this is non-obvious, but can be easily shown).

Also note that a state in which no formulas are satisfiable will have probability 1
Z exp(0) = 1

Z ; such a

state becomes increasingly unlikely when Z is large (that is, when there are many other states which do

satisfy the formulas).

9

2. BACKGROUND AND RELATED WORK

We have defined an MLN as a knowledge base consisting of arbitrary first-order formulas, but it is

also possible to restrict the allowable formulas to clauses only. An MLN with this restriction is said to be

in clausal form. Note that although the formulas of an MLN can always be converted into a set of clauses

by writing each formula in conjunctive normal form and splitting the result into its separate clauses1, the

resulting clausal-form MLN is not in general equivalent to the original. To see this, consider the case of

a single CNF formula with large weight, which is split into two clauses by the conversion process. The

original MLN assigns either very low or very high probability to any given state of the world, depending on

whether the single original formula is satisfied, while the clausal form MLN also recognizes an intermediate

state in which only one of the clauses is satisfied. It follows that the dependencies of the original formula

are not entirely captured by its factorization into clauses. Despite their limitations, however, clausal form

MLNs are often more convenient to work with than arbitrary MLNs and are generated or required by

many algorithms, including each of those discussed below.

Markov logic networks are an extremely general and powerful representation. For example, it can

be shown that any probability distribution over discrete or finite-precision numeric variables can be

represented as an MLN, and that first-order logic is the special case of Markov logic obtained in the limit

when all weights are equal and tend to infinity (Richardson and Domingos, 2006).

2.2.1 Interpretation as Markov Networks

As described above, Markov logic networks can be interpreted as defining templates for the construction

of Markov networks (also called Markov random fields), which are a type of undirected graphical model

in which the edges specify dependency relationships between nodes (Pearl, 1988). Given an MLN and

a set of constants, the structure of the corresponding ground Markov network is given by an undirected

graph constructed by two principles:

1. The graph contains a node for each ground atom (i.e., every possible instantiation of an atom from

the MLN using the available constants).

2. Two nodes are connected by an edge if and only if their corresponding ground atoms appear together

in one of the ground formulas created by instantiating the MLN formulas with the chosen constants.

1We can remove universal quantifiers, because we assume all standalone clauses to be universally quantified. Existential

quantifiers can be removed by Skolemization, which in its simplest case involves simply creating a new constant to represent

the object which was posited by the quantifier.

10

2.2 Markov Logic Networks

Actor(brando)

Director(brando)

WorkedFor(brando,brando) WorkedFor(brando,coppola)

Credits(godFather,brando)

Credits(godFather,coppola)

WorkedFor(coppola,brando) WorkedFor(coppola,coppola)

Director(coppola)

Actor(coppola)

Figure 2.1: The ground Markov network corresponding to the MLN of Table 2.1 (Mihalkova, 2009).

Applied to the movie domain given in Table 2.1 with constants brando, coppola, and godFather,

this process produces the result shown in Figure 2.2.1. Note that a state of the world corresponds to an

assignment of truth values to every node in the graph. In particular, the truth value of a ground atom is

conditionally independent of all ground atoms it is not connected to, given the truth values of the atoms

which it is connected to. This is because two atoms which never appear together in the same formula

can have at most an indirect relationship to each other. The set of nodes connected to a particular node

is known as the Markov blanket of that node; conditional independence given the Markov blanket is the

defining property of a Markov network.

Like other forms of graphical models (e.g. Bayesian networks), Markov networks define a probability

distribution over all possible states of the various propositions contained in the network. This joint

distribution is given by (Richardson and Domingos, 2006)

P (X = x) =
1
Z

∏
k

φk(xk) (2.2)

where Z is again just a normalization constant (Z =
∑
y

∏
k φk(yk)), the product is taken over all cliques

in the graph, xk is the state of the atoms in the kth clique when the graph as a whole is in state x, and

11

2. BACKGROUND AND RELATED WORK

φk is a potential function defined on that clique. Note that the cliques of the graph correspond roughly

to the ground formulas of the MLN: every ground formula has a corresponding clique which contains

all of the ground atoms making up that formula, although not every clique has a unique associated

ground formula. For the kth clique, we define the potential function φk to be 1 if no ground formulas

are associated with the clique, and φk(xk) =
∏
f∈F e

wfgf (xk) otherwise, where F is the set of ground

formulas which correspond to the kth clique, wf is the weight given to the first-order formula of which

the formula f is an instantiation, and gf (x) is 1 if formula f is true when the clique is in state xk, and 0

otherwise.

From this representation it is easy to derive Equation 2.1 for the probability distribution specified by

an MLN. Observe:

P (X = x) =
1
Z

∏
k

φk(xk)

=
1
Z

∏
f∈F

ewfgf (xf)

=
1
Z

∏
i

(ewi)ni(x)

where i ranges over all of the first-order formulas of the MLN and ni(x) is the number of true groundings

of the ith formula; this is simply collapsing together the terms for all of the ground formulas produced

by the same first-order formula, since they have identical weights. We can then rewrite the distribution

in log-linear form

P (X = x) =
1
Z

∏
i

(ewi)ni(x)

=
1
Z

exp

(
log

(∏
i

(ewi)ni(x)

))

=
1
Z

exp

(∑
i

ni(x) log (ewi)

)

=
1
Z

exp

(∑
i

wini(x)

)
thus justifying Equation 2.1 (it should be easy to see that this Z is equal to the Z of Eqn. (2.1)). This

demonstrates that the first-order MLN representation produces the same distribution as a ground Markov

network built from the relevant ground atoms. Note that the ground Markov network is exponentially

larger than the MLN representation which generated it, since the ground network must explicitly represent

every ground atom.

12

2.3 Learning in MLNs

2.2.2 Inference

The definition of MLNs gives us an expression for the probability of any particular state of the world. We

can extend this to allow us to find the probability of arbitrary first-order formulas, or even the probability

of one formula conditioned on another. Given an MLN L, a set of constants C, and any two first-order

formulas F1 and F2, the conditional probability that F1 holds given that F2 holds is given by

P (F1 | F2) =
P (F1 ∧ F2)
P (F2)

(2.3)

=

∑
x∈{F1}∩{F2} P (X = x)∑

x∈{F2} P (X = x)
(2.4)

where P (X = x) is defined as in Eqn. (2.1) and {F1},{F2} are interpreted as the sets of states in which

those formulas hold. This is simply saying that the conditional probability P (F1|F2,ML,C) is given by

the probability of F1 and F2 both being satisfied, divided by the probability that F2 is satisfied. The

probabilities of these conditions can be computed by summing the probabilities of each of the states in

which they hold, where those underlying probabilities are computed using the standard procedure given

in Equation (2.1).

Unfortunately, while this method is theoretically valid, counting the number of satisfying assignments

to first-order formulas is in general #P-complete, and therefore intractable to compute exactly in practice.

Instead, a variety of more efficient techniques are used to perform approximate inference; see Richardson

and Domingos (2006) and Mihalkova (2009) for details.

2.3 Learning in MLNs

The formulas and weights of an MLN can be specified entirely by hand, but in many cases we do not

know the exact relationships which are most relevant to the structure of a domain, nor do we know the

precise weight to give to each formula. The usefulness of Markov logic networks therefore rests in large

part on our ability to learn these elements from data. That is, given information about the truth values

of some set of ground atoms, we want to learn an MLN structure, which as discussed above will generate

probability distributions over any set of ground atoms from the domain. For example, we may know

the functions and interactions of a small set of proteins from a particular type of yeast1, and want to

learn from these a general pattern of relationships – i.e., an MLN consisting of formulas with weights —

1That is, we know the truth values of the ground atoms HasFunction(protein1, functionX), HasFunction(protein2,

functionX), Interaction(protein1, protein2), etc. for some small set of proteins and their functions.

13

2. BACKGROUND AND RELATED WORK

which will allow future prediction of the functions or interactions of other proteins. This task is broken

into two subtasks which are generally approached separately: learning the weights to associate with each

formula, and learning the formulas themselves (structure learning). This thesis focuses on the structure

learning task (Lowd and Domingos (2007) discuss approaches to weight learning), and two algorithms

for MLN structure learning are discussed below: one (MSL) which uses a local search procedure to find

a knowledge base (i.e. a set of formulas, or in this case, clauses) which maximizes the likelihood of the

observed data, and another (LHL) which directly constructs a candidate KB from the data.

2.3.1 MSL

Introduced by Kok and Domingos (2005), MSL (MLN Structure Learning)1 is a local search algorithm,

which builds a knowledge base one piece at a time, using hill-climbing to find a good solution. MSL

works exclusively with MLNs in clausal form, and in the following description we will assume that all

MLNs are in clausal form.

MSL attempts to find the KB which maximizes the likelihood of the training set. Because computing

the true likelihood is #P-complete, and even finding good approximate solutions is computationally

intensive (Kok and Domingos, 2005), MSL instead attempts to maximize a quantity based on the pseudo-

log-likelihood (PLL) (Besag, 1975)

logP ∗KB,W (X = x) =
n∑
l=1

logPKB,W (Xl = xl|MBx(Xl)) (2.5)

which is the sum, over all ground atoms in the training data, of the log-likelihoods that each atom is in the

state found in the data, given as evidence the atoms in its Markov blanket (the set of atoms with which

it shares an edge in the ground Markov network, i.e. the atoms on which it is conditionally dependent).

The subscript KB,W indicates that the likelihood depends on both the knowledge base and the choice

of weights which define the MLN2. The PLL differs from a genuine likelihood because the likelihood of

a state of the world cannot, in general, be factored into the likelihoods of its individual ground atoms.

Since the PLL tends to give too much weight to predicates with greater arities (as each can be grounded

1This algorithm does not seem to have a consistent name; Kok and Domingos (2005) refer to it as “MLN(SLB)”,

Mihalkova (2009) calls it “KD”, and Domingos and Lowd (2009) refer to it as “TDSL”. The use of “MSL” in this thesis

follows Davis and Domingos (2009).
2Note that since the likelihood depends on the weights as well as the formulas, we must also learn weights before

evaluating a set of formulas. This adds computational difficulties, which are ignored in this overview but discussed by Kok

and Domingos (2005).

14

2.3 Learning in MLNs

in many different ways, and so produces disproportionately many ground atoms), Kok and Domingos

(2005) introduced the weighted pseudo-log-likelihood

logP •KB,W (X = x) =
∑
r∈R

cr
∑
g∈Gr

logPKB,W (Xg|MB(Xg)) (2.6)

in which the single summation over all ground atoms is broken up into two parts: an outer sum over the

set of predicates R, and an inner sum over the groundings Gr of each predicate. The contribution of the

rth predicate is then scaled by a weight cr, which MSL sets as cr = 1
|Gr| in order to cancel out the effect

of variable numbers of groundings and establish a uniform weight for each predicate.

The WPLL gives the probability that the data is in the observed state, given the structure of a

particular MLN. From this, we can use Bayes’ rule to infer the converse, i.e. the probability of any

particular MLN structure given the observed data. In general this is given by

P (KB | data) =
P (data | KB)P (KB)

P (data)

and since the dataset does not change as we consider various different KBs to model it, the denominator

P (data) may safely be ignored during the maximization. This means that the probability of an MLN

structure varies according to the likelihood of the observed data under that structure, multiplied by the

prior probability of the structure. To prevent overfitting and discourage the algorithm from making too

many changes or adding too many new, specific clauses, MSL uses a structure prior given by e−α
PC

i=1 di ,

where the sum is taken over all clauses in the KB, di is the number of predicates differing between the

current version of a clause and its original version (if a clause is new, this is its length), and α is a

normalization constant. Thus, the quantity which MSL maximizes is given by the penalized WPLL

P (KB|data) = P (data|KB)P (KB) = P •KB,W (X = x) · e−α
PC

i=1 di .

MSL can be used to revise an existing knowledge base, or to learn a new KB from scratch. In either

case it starts with a KB consisting of an initial set of clauses (when learning from scratch, this is just

the predicates of the domain, taken as unit clauses) which it grows by adding new clauses, one at a time.

Each additional clause is chosen using a beam search process (described below) which attempts to find

the single clause which, if added to the current set of clauses under consideration, would most improve

the weighted pseudo-log-likelihood of that set. When no such clause can be found, then the process

terminates, a final step prunes all clauses which can be removed without decreasing the WPLL, and the

remaining clauses are returned.

15

2. BACKGROUND AND RELATED WORK

The beam search to select a new clause begins by considering all legal additions or deletions of a

single atom (possibly negated) from each of the current clauses under consideration. From the resulting

modified clauses, it picks the top b clauses which would most improve the WPLL of the MLN if added

to it, considers all legal mutations of those clauses, selects the top b, and this mutation/selection process

is then repeated until none of the mutated clauses improves the WPLL any further. At that point, the

best of the b clauses is added to the MLN, and the beam search process begins anew from the updated

MLN. Further details of the MSL algorithm are given by Kok and Domingos (2005).

2.3.2 LHL

An alternate approach to MLN structure learning is given by Kok and Domingos (2009). Rather than

explicitly searching through the space of possible knowledge bases, as MSL does, the LHL (Learning

through Hypergraph Lifting) algorithm constructs a candidate KB directly from the data. The procedure

views a database as a hypergraph, a generalization of a graph in which edges can connect arbitrary numbers

of nodes. Every constant in the domain is a node in the hypergraph, and every true ground atom is a

hyperedge, where the hyperedge links the nodes representing a set of constants if and only if those

constants appear as arguments in the same ground atom.

The algorithm builds a knowledge base by finding paths in the hypergraph. A path in the hypergraph

can be viewed as a conjunction of the ground atoms corresponding to the hyperedges of the path, and

can be converted into a first-order clause by variabilizing the ground atoms (i.e. replacing each constant

with a variable) and then applying De Morgan’s laws to convert the conjunction into a disjunction. The

resulting set of first-order clauses is then filtered using a greedy selection strategy which chooses the

clause providing the largest increase in WPLL, and repeats until no clause improves the WPLL (this is

the same greedy selection method used in the deep transfer method, described below).

The most sophisticated version of the algorithm first clusters the data into a lifted hypergraph,

in which the nodes represent clusters of the domain constants, rather than the constants themselves.

This clustering allows tractable pathfinding on large datasets. Kok and Domingos (2009) report that

hypergraph lifting produces results generally superior to those of MSL and requires a shorter running

time on large datasets. A basic version of the algorithm, which does not perform clustering, is known as

LHL-FindPaths; this requires a significantly higher running time but produces results roughly equivalent

to those from the full LHL algorithm.

16

2.4 Deep Transfer in Markov Logic Networks

2.3.3 Others

Domingos et al. (2006) note that the structure of an MLN can in principle be learned using any inductive

logic programming technique. ILP techniques are those that learn clausal knowledge bases (that is, sets

of logical clauses which express true facts about some data set) from relational databases. Initial efforts

at learning MLNs used CLAUDIEN (Raedt and Dehaspe, 1997), an ILP learner. However, unmodified

ILP techniques are not ideal for learning MLN structure, because they do not account for the ability of

MLN formulas to express uncertainty.

Recent approaches have also adapted techniques from the literature on ILP and on graphical models to

the more general framework on MLNs. The BUSL algorithm of Mihalkova and Mooney (2007) performs

bottom-up structure learning by first using relational pathfinding (Richards and Mooney, 1992), the ILP

technique which also forms the basis for LHL, to construct “nodes” representing first-order conjunctions

of related atoms, then applying a Markov network structure learner to find dependency relationships

between the nodes. The cliques in the resulting graph (which is effectively a Markov network) are then

instantiated into clauses to construct the final knowledge base. Another method, ILS (Biba et al., 2008),

uses an iterated local search strategy which searches through the space of clauses in a manner similar

to MSL’s beam search, but conducts the search from multiple randomly chosen starting points so as to

better avoid falling into local optima.

2.4 Deep Transfer in Markov Logic Networks

Structure learning in relational domains is often a difficult problem. One potential approach to improving

learning performance is to apply transfer learning (Torrey and Shavlik, 2009), that is, to use information

from related domains in order to assist learning the structure of a particular target domain. In general,

motivation for transfer stems from the observation that humans do not typically begin from scratch when

learning to perform a new task; instead, we apply relevant knowledge from related experiences we have

had in the past. Learning to understand the speech of a new friend is easy only because we already

know how to understand the speech of thousands of other people. Since for many tasks there is limited

task-specific training data available, it seems evident that achieving human-level learning performance on

complex tasks will require us to take advantage of transfer. This is sometimes referred to as the problem

of “lifelong learning” (Thrun and Mitchell, 1995).

Davis and Domingos (2009) present a method for transfer learning in MLNs; the method is known as

deep transfer (or DTM, for Deep Transfer in Markov logic networks). The goal of deep transfer learning

17

2. BACKGROUND AND RELATED WORK

¬ Actor(x) ∨ ¬Director(x)
¬ Director(x) ∨ ¬WorkedFor(x,y)
¬ Credits(x,y) ∨ ¬WorkedFor(y,z) ∨ Credits(x,z)

(a) First-order clauses

¬r(x) ∨ ¬s(x)
¬r(x) ∨ ¬s(x,y)
¬r(x,y) ∨ ¬s(y,z) ∨ r(x,z)

(b) Second-order clauses

{r(x),s(x)}
{r(s),s(x,y)}
{r(x,y),s(y,z),r(x,z)}

(c) Second-order cliques

Table 2.2: The clausal-form conversion of the MLN of Table 2.1, lifted first into second-order logic, then

into second-order cliques, illustrating three levels of abstraction in DTM.

is to transform knowledge learned in some source domain into domain-independent abstract knowledge,

which can be used to bias the process of structure learning in a destination domain and hopefully lead to

improved performance. This domain-independent knowledge is represented in the form of second-order

logic, which generalizes and groups first-order formulas together according to common structure.

The DTM transfer process begins with a clausal form MLN describing the source domain. Possible

strategies for obtaining such an MLN are discussed below. The clauses of the source MLN are abstracted

by replacing each predicate name with a predicate variable to produce a set of second-order clauses, as

shown in Table 2.2. Each clause is considered independently, so a single second-order predicate variable

can take the place of different first-order predicate names in different clauses, but within a single clause

it must only take the place of a single predicate.

After arriving at a set of second-order clauses, the deep transfer process groups them into cliques,

where a clique is simply a set containing the atoms of a formula, stripped of any logical structure (see

Table 2.2)1. The correspondence between second-order cliques and clauses is analogous to that of the

ground formulas of a Markov logic network to the cliques in the corresponding Markov network. DTM

requires that no two cliques can be equivalent modulo variable renaming (e.g. {r(z,y),r(x,y),s(z,x)}
1The abstraction from formulas to cliques is a design decision intended to allow DTM to capture a very general sort

of abstract structure. Chapter 6 describes a transfer algorithm which uses second-order formulas to transfer more specific

structural properties.

18

2.4 Deep Transfer in Markov Logic Networks

is equivalent to {r(x,y),r(z,y),s(x,z)} under the renaming z ↔ x) and that within every clique

a path of shared variables must connect each pair of atoms (e.g. {r(x,y),s(y,y)} is allowed, but

{r(x,y),s(z,z)} is not, because in the latter case the two atoms share no variables).

For each clique of size k, DTM defines 2k features or states of the clique, which are all possible

assignments of truth values to the atoms comprising the clique. The features are represented as con-

junctions which hold true only if their components take on the designated truth values. Like the set of

cliques overall, the set of features within a clique is pruned for redundancy modulo variable renaming,

resulting in fewer than 2k effective features in most cases. For example, if {r(x,y),r(y,x)} is a clique,

then its three features are r(x,y) ∧ r(y,x), r(x,y) ∧ ¬r(y,x), and ¬r(x,y)∧ ¬r(y,x); the fourth

possibility ¬r(x,y) ∧ r(y,x) is not explicitly included because it would be redundant. An additional

restriction is that the variables of a feature are not allowed to unify, so e.g. the feature r(x,y) ∧ r(y,x)

really represents r(x,y) ∧ r(y,x) ∧ x 6= y.

2.4.1 Clique Evaluation

All cliques are scored to determine to what extent they represent a meaningful second-order regularity in

the source domain. To score a second-order clique, DTM takes the average score of its top m first-order

instantiations (this is to favor cliques having multiple useful instantiations, which we expect to capture

important second-order regularity). This requires calculating a score for each of the first-order cliques

which can result from instantiating the predicate variables of the second-order clique; the score of a first-

order clique indicates intuitively whether the clique has any explanatory value as a structural regularity,

above and beyond that provided by its various subcliques. To measure this, we divide the clique into

every possible pair of subcliques (e.g. for a size-2 clique, the subcliques would just be the two individual

nodes) and, for each division, compute the Kullback-Leibler divergence

D(p‖q) =
∑
x

p(X = x) log
p(X = x)
q(X = x)

where X is a random variable representing a state of the clique, the sum is taken over all possible states of

the clique, p is the the probability distribution over states assigned to the entire first-order clique, and q

is the probability distribution that the clique would have if the two subcliques were independent (i.e. the

product of the distributions of the two subcliques). This value of this divergence is the additional number

of bits which would be required to encode a state of the clique using an encoding based on the distribu-

tion q instead of the distribution p, i.e. the information gain
∑
x−p(x) log q(x) −

∑
x−p(x) log p(x) of

19

2. BACKGROUND AND RELATED WORK

considering the clique as a structural whole instead of as a conglomeration of two independent subcliques.

The score of the first-order clique is the minimum of the K-L divergences of its various divisions, because

if there is even one way of splitting a clique that does not change the distribution of the states of that

clique, then that shows us that the dependence assumptions of the clique are not valid (i.e. we might as

well just abandon the clique and work with its subcliques).

The probability distributions used in the above scoring process are estimated from the available data

in the source domain. For example, suppose we are working in a domain concerned with people’s smoking

habits, and we want to score the first-order clique

{Friends(a,b), Smokes(a), Smokes(b)}.

This requires us to estimate p(x) for each of the eight possible states of the clique (i.e. a smokes, b

smokes, and a,b are friends; a doesn’t smoke, b smokes, and a,b are friends; and so on). Our estimate of

the probability of any particular state is simply the number of ways in which constants from the domain

can be assigned to a and b to produce that state, normalized by the total number of possible assignments

to a and b. If there are 100 people in our database and only 10 pairs of friends who each smoke, then

the probability of the state Friends(a,b) ∧ Smokes(a) ∧ Smokes(b) is estimated to be 10
4950 — this is

just the number of pairs of friends who smoke, divided by the total number of pairs of people.

To estimate q(x) for any particular decomposition of the clique, say {Smokes(a), Smokes(b)},{Friends(a,b)},

DTM follows the same procedure to estimate the probabilities of the corresponding substates of x for

both halves of the decomposition. Then the two probabilities obtained are simply multiplied together to

produce an estimate of the joint probability under the assumption of independence, which is exactly the

definition of q(x).

2.4.2 Performing Transfer

After the scoring process is complete, DTM selects the top k second-order cliques which have at least

one true grounding in the target domain, and uses them to bias structure learning in the target domain.

Davis and Domingos (2009) give three approaches for doing this, two of which are considered here (their

third approach, seeding the beam, is more complex and was not found to provide significant benefits over

the methods presented below):

• Greedy Selection (without refinement): This method first generates all clauses corresponding

to legal instantiations of the top k second-order cliques with legal groundings in the target domain.

20

2.4 Deep Transfer in Markov Logic Networks

It instantiates a clique into a set of clauses by simply converting every feature of the clique into

a disjunction, and then for each disjunction considering all ways in which the second-order predi-

cate variables can be replaced with first-order predicate names, while maintaining type and arity

constraints. For example, the second-order clique {r(x,y),r(y,x)} has three features r(x,y) ∧

r(y,x), r(x,y)∧ ¬r(y,x), and ¬r(x,y)∧ ¬r(y,x). In the smoking domain mentioned earlier,

with Friends and Smokes as the only first-order predicates, this clique would be instantiated as

the three clauses
¬Friends(x,y) ∨ ¬Friends(y,x)
Friends(x,y) ∨ ¬Friends(y,x)
Friends(x,y) ∨ Friends(y,x)

After generating all clauses which are legal instantiations of the top cliques, the final MLN is built

iteratively by greedily selecting the clause which most improves WPLL, adding it to the MLN, and

repeating the process until no remaining clauses would improve WPLL by their addition.

• Greedy Selection with Refinement: This builds off of the previous approach by adding a

refinement step. MSL (as described above) is used to refine a preliminary KB produced the greedy

selection method.

2.4.3 Sources of Transfer

The deep transfer algorithm can perform transfer from any source-domain knowledge base, whether

hand-coded or learned through automated structure learning. Davis and Domingos (2009) evaluate two

approaches for generating such a KB: beam search and exhaustive search (they did not consider transfer

from a hand-coded KB, and neither does this thesis, although such a process is certainly conceivable).

The beam search-based method runs MSL several times to construct a set of models which each predict

various subsets of the full set of predicates in the domain, and then considers together the entire set of

clauses contained in the individual models. Exhaustive search, on the other hand, simply generates all

valid first-order clauses in the domain, up to a maximum length and maximum number of variables – it

does not consider the data available in the source domain. Although exhaustive search is only tractable

when limited to relatively short clauses, Davis and Domingos (2009) found that the results produced

were nonetheless as good as or better than those obtained through beam search. One explanation for this

might be that transfer works best with short clauses in any case (since longer formulas are likely to be

more arbitrary and domain-specific), and there is no penalty for including clauses which say little about

21

2. BACKGROUND AND RELATED WORK

the domain, since DTM scores all cliques and keeps only the top scoring cliques. DTM does not consider

the weights of the formulas used as sources for transfer.

Unless otherwise specified, in this thesis I will generally use DTM to refer to the form of the algorithm

in which exhaustive search is used to generate cliques for transfer.

2.4.4 Other Transfer Methods for MLNs

The TAMAR algorithm (Transfer via Automatic Mapping and Revision) proposed by Mihalkova et al.

(2007) performs transfer using a direct mapping between the predicates of different domains, rather

than by creating abstract domain-independent knowledge as in DTM. For every clause in the source

domain, TAMAR conjectures a mapping of each predicate to a predicate in the target domain (the

mapping is found by a simple exhaustive search over all possible mappings for the predicates within the

clause, choosing the mapping which gives the highest WPLL for the resulting target-domain clause),

and then revising the resulting MLN. This approach is based on analogical reasoning, in which the

mappings between predicates represent analogies between source-domain and target-domain concepts

(e.g. Professor to Director and Student to Actor might be a possible mapping). Davis and Domingos

(2009) attempted to compare TAMAR to DTM and found that TAMAR gave significantly inferior results

in one case, and failed to complete in another case because the exhaustive search over all possible mappings

becomes intractable when transferring to a domain with large number of predicates.

A related approach which follows a similar analogical style is given by Mihalkova and Mooney (2009).

The SR2LR algorithm is based on the same idea of choosing a cross-domain mapping of predicates, but

with a focus on optimizing performance when there is very little data available in the target domain.

This is done by splitting the source-domain clauses into a set of “short-range” clauses, whose mappings

can be directly evaluated using the available data in the target domain, and “long-range” clauses, for

which the available data is insufficient to evaluate potential mappings. Results from the short-range

clauses are used to select mappings for the long-range clauses, and together these mappings applied to

the source-domain MLN specify the final target MLN; no revision is performed.

22

3

Domains and Methods

This chapter provides common background for the results of Chapters 4, 5, and 6. In those chapters,

I evaluate several methods for structural transfer and other forms of structure learning in Markov logic

networks. While the the details of each experiment will be discussed as they arise, they do share many

common features. In particular, all experiments used data from four real-world domains: the movie

business (IMDB), an academic department (UW-CSE), web pages of computer scientists (WebKB), and

the proteins of the yeast Saccharomyces cerevisiae (Yeast Protein). The first section of this chapter

describes the methods common to all experiments in this thesis; the second section describes in detail

the four domains used for evaluation.

3.1 Methods

When evaluating a structure learning method, each dataset was divided into four independent folds.

Evaluation was through leave-one-out cross-validation, in which the system was trained on every three-

fold subset of the four total folds (in this context, training consists of learning an MLN structure, i.e. a

set of first-order formulas) and tested on the fourth. The results given are averages over results from the

four folds of each domain.

All experiments used the implementation of MSL from the publicly available Alchemy package (Kok

et al., 2009) along with an Alchemy-based implementation of DTM provided by Jesse Davis. Weight learn-

ing was performed using the L-BFGS-based algorithm described by Richardson and Domingos (2006),

which optimizes the pseudo-likelihood of the data. Source clauses for DTM were generated by exhaus-

tive search over all clauses containing at most three literals and three object variables. MSL structure

23

3. DOMAINS AND METHODS

True Total
Types Predicates Constants Atoms Atoms

IMDB 5 5 251 1039 55722
UW-CSE 8 10 442 1407 174785
WebKB 3 3 4953 283489 20663916
Yeast Protein 7 7 2470 15015 4533900

Table 3.1: Datasets used.

refinement was time-limited to 20 hours for each trial. Following Davis and Domingos (2009), I allowed

MSL to learn clauses containing constants; out of all the object types represented in the various datasets,

I permitted only role (IMDB), rank (UW-CSE), function (Yeast), and page class (WebKB) to appear as

constants in learned clauses.

Following Kok and Domingos (2005) and others, I evaluated each set of learned formulas using the

test set conditional log-likelihood (CLL) and the area under the precision-recall curve (AUC). The CLL

has the advantage of directly measuring the quality of the probability estimates produced, while the AUC

is useful because it is insensitive to the large number of true negatives in the data. The CLL is calculated

by averaging, over all ground atoms, the predicted log-likelihood that each ground atom takes on its true

value, calculated using the learned MLN and given as evidence the truth values of all other ground atoms

in the test set. Individual points on the precision-recall curve are found by varying the CLL threshold

above which a ground atom is predicted to be true, and calculating the precision and recall for each

threshold setting; the AUC is the area under the resulting curve.

3.2 Domains and Datasets

Details on the four datasets used in my experiments are provided in Table 3.1. The WebKB and Yeast

Protein datasets were provided by Jesse Davis and are used to allow comparison with the results of

Davis and Domingos (2009). The IMDB and UW-CSE datasets are publicly available from alchemy.cs.

washington.edu (as is a version of WebKB).

WebKB. This dataset consists of labeled web pages from the computer science departments of four

universities, with predicates indicating the words occurring on each page, the class label of each page

(faculty, student, course, etc.), and the links between pages. The data from each university is treated as

a separate fold. I attempt to predict the truth values of all groundings of the Linked and PageClass

predicates. These correspond to the “link prediction” and “collective classification” tasks, respectively,

24

alchemy.cs.washington.edu
alchemy.cs.washington.edu

3.2 Domains and Datasets

in which the available information about a page’s situation within the broader network is used in order

to predict which pages it links to and what its class label should be. The data is originally sourced

from Craven and Slattery (2001), and the version used both in this paper and in Davis and Domingos

(2009) is equivalent to the version publicly available at alchemy.cs.washington.edu, with the following

modifications: the seven single-arity predicates FacultyPage, CoursePage, etc. indicating the class label

of a page are collapsed into a single predicate PageClass of arity two, and only the Has, Linked, and

PageClass predicates are considered.

For tractability on the WebKB data, I followed Davis and Domingos (2009) in using information gain

on the training set to pick the fifty words most predictive of page class; these were used to train and

evaluate the learned MLN.

Yeast Protein. This dataset contains information on protein location, function, phenotype, class,

and enzymes within the yeast Saccharomyces cerevisiae, as well as protein interactions and protein com-

plex data, all from the MIPS Comprehensive Yeast Genome Database as of February 2005 (Mewes et al.,

2002). I used the version of the data from Davis and Domingos (2009), which is split into four disjoint

subsamples which are used as folds, and attempted to predict the function of each protein as well as its

interactions with other proteins, represented by the Function and Interaction predicates, respectively.

IMDB. This dataset describes a movie domain, consisting of movies, actors, directors, etc. and

with predicates indicating their relationships. The data was collected from imdb.com by Mihalkova and

Mooney (2007). The data is split into five disjoint folds, but I used only the first four folds in order to

maintain consistency with my use of WebKB and Yeast. I attempted to predict the WorkedUnder and

WorkedInGenre predicates. Following Kok and Domingos (2009) I omitted four equality predicates which

are superseded by the equality operator available in Alchemy. In addition, for consistency with WebKB,

I collapsed the single-arity Actor and Director predicates into a single predicate HasRole with arity two

(similar to PageClass in WebKB).

UW-CSE. This dataset, from Richardson and Domingos (2006), describes anonymized relationships

between students, faculty, and courses in the University of Washington Computer Science and Engineering

Department. The data is split into five folds representing the subdisciplines of AI, graphics, programming

languages, systems, and theory; again for consistency I used only four folds, omitting the systems data

(chosen randomly). Following Richardson and Domingos (2006) I attempted to predict the AdvisedBy

predicate. As with IMDB, I omitted nine redundant equality predicates, and I collapsed the single-arity

Student and Professor into a single HasRank. I also simplified the TaughtBy and TA predicates of UW-

CSE to ignore the particular quarter in which a course was taught, reducing the arity of each of those

25

alchemy.cs.washington.edu
imdb.com

3. DOMAINS AND METHODS

IMDB UW-CSE WebKB Yeast

Gender(person,male or female) AdvisedBy(person person) Has(page,word) Complex(protein,complex id)

HasRole(person,+dir or actor) CourseLevel(course,level) Linked(page,page) Enzyme(protein,enzyme id)

WorkedInGenre(person,genre) HasPosition(person,position) PageClass(page,+pclass) Function(protein,+func id)

WorkedOnMovie(movie,person) HasRank(person,+prof or student) Interaction(protein,protein)

WorkedUnder(person,person) InPhase(person,phase) Location(protein,location id)

Publication(title,person) Phenotype(protein,phenotype id)

Ta(course,person) ProteinClass(protein,pc id)

TaughtBy(course,person)

TempAdvisedBy(person,person)

YearsInProgram(person,integer)

Table 3.2: Predicates and object types for each dataset. Plus signs indicate terms which are allowed to

appear as constants in learned clauses.

predicates from three to two. This change was motivated by the fact that DTM can only transfer between

predicates having the same arity; because there are no arity-three predicates in our other datasets these

predicates would otherwise have been completely ignored by the transfer process.

Table 3.2 lists all of the predicates considered for each domain.

26

4

Preliminary Questions

This chapter asks and answers two basic questions about the DTM framework for cross-domain transfer.

Although the deep transfer algorithm is designed to perform transfer from a single source domain to a

target domain, Davis and Domingos (2009) do suggest the extension to multiple source domains as possible

future work. The first section of this chapter investigates this possibility, gives two different mechanisms

for doing so—both of which naturally extend the standard DTM algorithm for single-source transfer—and

evaluates their performance. I then turn to the question of whether the structures discovered by DTM

are so general as to not even be domain-specific in any meaningful sense; this is inspired by Davis and

Domingos (2009) noting that certain patterns such as symmetry, homophily, and transitivity, occurred in

every domain they evaluated. The second section of this chapter addresses this question by attempting to

construct a single set of cliques which is effective as a universal transfer source, i.e. a set of cliques which

captures widely useful structural properties which are common to many different domains, and which we

would expect to perform well as a transfer source regardless of the target. I construct two candidates for

such a set and evaluate their performance as sources for transfer to all four of the domains considered in

this thesis.

4.1 Transfer from Multiple Sources

This section describes two relatively straightforward methods for transfer from two source domains si-

multaneously; each can be easily extended to transfer from three or more sources. Each method begins

by identifying the top-ranked cliques in each source domain, using exhaustive search and clique-scoring

exactly as if executing DTM to perform single-source transfer in the usual way. Recall that the score of

27

4. PRELIMINARY QUESTIONS

a clique is the average score of its best k first-order instantiations (following Davis and Domingos (2009)

I set k = 3), where the score of a first-order instantiation is given by the worst-case K-L divergence

between the probability distribution of the clique and the distribution resulting from assuming that some

of its subcliques are independent of each other. For each source domain, this scoring process produces

a list of cliques with corresponding scores. Two different methods are considered for merging these lists

into a single, unified list of cliques:

• Top Cliques: This method combines the highest scoring cliques from both domains, by taking the

union of the top m cliques from each domain’s list. If a clique occurs on both lists with different

scores, in the merged list it is assigned the higher of the two scores.

• Common Cliques This method finds high scoring cliques which are shared across both domains.

We consider the top m cliques of each domain (where m is larger than n, the number of cliques

required for our merged list) and create a merged list by taking the intersection, so that a clique

appears in the list only if it is within the top m cliques of both domains. Again, if a clique appears

in both lists with different scores, then in the merged list it is assigned the higher of the two scores.

A related approach, not evaluated here, would be a modification of the Top Cliques method which

assigns each clique the minimum of its two scores, rather than the maximum (if a clique has no true

instantiations in a domain, it is given a score of zero in that domain). This would have the effect

of preferring cliques which score well in both domains, but in a more nuanced manner than that of the

Common Cliques method (if desired, the preference could be relaxed somewhat by using the mean instead

of the minimum).

Regardless of the method used, once a merged list of cliques is generated, the top n cliques are

considered, ranked using the scores of the merged list. The transfer process then proceeds exactly as

in the standard DTM algorithm, instantiating these cliques in the destination domain and using greedy

selection (with or without refinement) to generate a final set of first-order clauses.

4.1.1 Experiments and Results

Table 4.1 gives the areas under the curve for greedy transfer with refinement of the top and common cliques

of every two-source transfer scenario. All lists of combined cliques were created by considering the top

m = 25 cliques of the individual domains, and in each case the top n = 10 combined cliques were used for

transfer. Results are omitted whenever a test predicate is contained in one of the source datasets; because

28

4.1 Transfer from Multiple Sources

Domain Predicate I+U I+W I+Y U+W U+Y W+Y Best Individual MSL

IMDB WorkedInGenre 0.61 0.61 0.61 0.61 0.32

IMDB WorkedUnder 0.23 0.23 0.21 0.23 0.03

UW-CSE AdvisedBy 0.08 0.08 0.08 0.08 0.04

WebKB Linked 0.02 0.01 0.04 0.09 0.004

WebKB PageClass 0.86 0.86 0.86 0.86 0.87

Yeast Function 0.34 0.34 0.34 0.34 0.27

Yeast Interaction 0.04 0.04 0.04 0.10 0.04

(a) Top Cliques

Domain Predicate I+U I+W I+Y U+W U+Y W+Y Best Individual MSL

IMDB WorkedInGenre 0.61 0.56 0.61 0.61 0.32

IMDB WorkedUnder 0.30 0.31 0.21 0.23 0.03

UW-CSE AdvisedBy 0.10 0.10 0.08 0.08 0.04

WebKB Linked 0.01 0.04 0.01 0.09 0.004

WebKB PageClass 0.86 0.86 0.86 0.86 0.87

Yeast Function 0.34 0.34 0.34 0.34 0.27

Yeast Interaction 0.04 0.04 0.04 0.10 0.04

(b) Common Cliques

Table 4.1: AUC of the top and common cliques for each two-source transfer scenario, using greedy transfer

with refinement. Domains are labeled in the column headings by the first letter of their full names.

the source cliques are discovered using all four folds of available data from each domain, to report these

results would constitute testing on the training set. For each predicate, the “Best Individual” column

gives the best-case performance of deep transfer from any single domain, using greedy selection with

refinement and transferring n = 10 cliques from any of the three domains not containing the predicate.

Results for MSL are also provided for purposes of comparison.

In no case did transfer of the top ten cliques taken from two different domains produce better results

than did transfer from the better of the two source domains considered individually (see Chapter 5 for the

results of transfer from each individual source domain). Transfer from the top ten common cliques did

improve on the results of both component domains in four specific cases — namely, predicting AdvisedBy

using IMDB+WebKB and IMDB+Yeast, and predicting WorkedUnder using UWCSE+WebKB and

UWCSE+Yeast — although none of the improvements were significant (paired one-tail t-test, p > 0.1).

Interestingly, the top ten cliques of the WebKB and Yeast domains are exactly identical (as shown in

Table 5.3, so the transfer from WebKB+Yeast is equivalent to transfer from either of those two individual

domains. However, because WebKB and Yeast assign different scores to the same cliques, they sometimes

give different results in these experiments when combined with other domains.

29

4. PRELIMINARY QUESTIONS

4.1.2 Discussion

The results show no significant advantage for either method of transfer from multiple sources, compared

to transfer from a single source (although there may be some small advantage for the common-cliques

method which does not rise to the level of statistical significance). This does not preclude the possibility

that there might be some case in which it would be advantageous to perform transfer from multiple

source domains, but it does show that, in many typical transfer situations, there is no advantage to

doing so using either of these methods. The methods described in this section extend the single-source

DTM algorithm in a simple, natural way, but they do not exclude the possibility of a more sophisticated

algorithm which might be more generally effective.

4.2 Universal Transfer

One intriguing property of deep transfer is that many of the same cliques tend to turn up regardless of

the particular source domain used. This was noted by Davis and Domingos (2009), who interpreted some

of these common cliques as representing certain intuitive structural properties such as homophily (which

states that objects having similar properties tend to also have some direct relationship), transitivity, and

symmetry. On the one hand, this could help to explain why it appears to often not be helpful to merge

two source domains (i.e. because if two domains have similar cliques, then the merged version will not be

too different from either domain individually), but on a broader level, it raises the question of whether

the performance increases observed through deep transfer might simply be due to a small set of common

structural properties present in almost every real-world domain, rather than any specific useful knowledge

from the source domain. If the former, there ought to be some set of highly-common cliques that could

be used as a “universal” transfer source, to improve structure learning performance without requiring

the choice of a specific source domain. Note that although the no free lunch theorems (Wolpert, 1996)

forbid the existence of a truly universal transfer source due to the philosophical problem of induction,

this does not preclude the possibility that there may still exist some set of cliques which is effective as a

fixed transfer source for many real-world domains.

To explore this possibility, I generated two sets of cliques using data from all four available datasets;

these sets were intended to serve as candidates for a universal transfer source. The first set of cliques,

referred to as “U4”, consists of all cliques which were ranked among the top 25 cliques in each of the four

datasets considered. There were ten such cliques, listed in Table 4.2(a). The second set of cliques, called

“U3”, consists of all cliques which were ranked among the top 15 in at least three of the four datasets;

30

4.2 Universal Transfer

Rank Clique Interpretation
1 r(x,y),r(x,z) co-occurring feature pairs
2 r(x,y),r(z,y) common feature values
3 r(x,y),r(z,y),s(x,z) homophily
4 r(x,y),r(z,y),s(x,x)
5 r(x,y),r(x,z),s(x,x)
6 r(x,y),r(y,z),r(z,x) transitivity
7 r(x,y),s(x,z)
8 r(x,x),r(y,x),r(z,x)
9 r(x,x),r(y,x)
10 r(x,x),r(y,x),s(x,z)

(a) U4

Rank Clique Interpretation
1 r(x,y),r(x,z) co-occurring feature pairs
2 r(x,y),r(z,y) common feature values
3 r(x,y),r(z,y),s(x,z) homophily
4 r(x,y),r(z,y),s(x,x)
5 r(x,y),r(x,z),s(x,x)
6 r(x,y),r(y,z),r(z,x) transitivity
7 r(x,y),s(x,z)
8 r(x,y),r(y,x),r(z,x)
9 r(x,y),r(y,x) symmetry
10 r(x,x),r(y,x),r(z,x)

(b) U3

Table 4.2: Candidate cliques for a universal transfer source.

thus allowing the additional consideration of cliques which were generally but not universally useful. This

set, listed in Table 4.2(b), also included ten cliques. Note that U3 includes cliques representing every one

of the intuitive properties mentioned by Davis and Domingos (2009), and U4 includes cliques representing

all but symmetry. Although in principle any set of cliques can be treated as a possible source for universal

transfer, the fact that U4 and U3 were constructed from the shared cliques of very different domains, in

addition to their inclusion of these common intuitive properties, makes U4 and U3 particularly plausible

candidates for such a source.

31

4. PRELIMINARY QUESTIONS

Domain Predicate U3 U4 Best Individual MSL
IMDB WorkedInGenre 0.56 0.56 0.61 0.32
IMDB WorkedUnder 0.31 0.30 0.23 0.03
UW-CSE AdvisedBy 0.10 0.08 0.08 0.04
WebKB Linked 0.06 0.01 0.09 0.004
WebKB PageClass 0.86 0.86 0.86 0.87
Yeast Function 0.33 0.34 0.34 0.27
Yeast Interaction 0.10 0.04 0.10 0.04

(a) AUC (higher is better)

Domain Predicate U3 U4 Best Individual MSL
IMDB WorkedInGenre -0.16 -0.16 -0.13 -0.30
IMDB WorkedUnder -0.16 -0.16 -0.17 -0.23
UW-CSE AdvisedBy -0.03 -0.03 -0.03 -0.04
WebKB Linked -0.02 -0.02 -0.02 -0.02
WebKB PageClass -0.07 -0.07 -0.07 -0.07
Yeast Function -0.18 -0.18 -0.18 -0.19
Yeast Interaction -0.03 -0.04 -0.03 -0.04

(b) CLL (closer to zero is better)

Table 4.3: Transfer from common cliques.

4.2.1 Experiments and Results

Results of greedy transfer with refinement from U4 and U3 are presented in Table 4.3. For each predicate,

the “Best Individual” column gives the best-case performance of deep transfer from a single source, using

greedy selection with refinement, transferring n = 10 cliques from any of the remaining three domains

not containing the predicate. Results for MSL are also provided for purposes of comparison.

Transfer from both U3 and U4 matches or exceeds the performance of MSL in every case, which indi-

cates that these sets of cliques are genuinely aiding in the structure learning process for all four domains

tested. In three cases the advantage over MSL in AUC was significant: when predicting WorkedUnder

using either set of cliques, and U4 predicting Function (paired two-tail t-test, p < 0.05; several other

transfer cases were almost significant but suffered from high variance among the four folds). U3 per-

formed better overall than U4, presumably because its more relaxed method of construction allows it

to consider cliques which are generally useful even if they are not ubiquitous. The performance of U3

matches or exceeds that of the best case of single-source DTM for four of the seven predicates, while

32

4.2 Universal Transfer

DTM maintains a slight advantage in the other three cases. For none of the seven predicates was the

difference in AUC between U3 and the best single-domain transfer source statistically significant (paired

two-tail t-test, p > 0.1).

4.2.2 Discussion

Both sets of cliques performed as well or better than MSL on all predicates in the domains I considered,

and the improvement was significant in several cases. This shows that relative to structure learning in the

target domain, transfer from U3 or U4 never hurts and often helps. Since both U3 and U4 contain cliques

representing structural properties which might be expected to be commonly applicable, this empirical

evidence adds strength to the argument that they should be considered as generally useful sources for

transfer.

Compared to the best cases of single-domain transfer for each predicate, neither U3 nor U4 prevailed in

every case. However, both sets of cliques equalled or exceeded the performance of the best single-domain

source for four of the seven predicates tested. This shows that in many cases, these sets of cliques not

only explain the success of transfer through DTM, but actually improve on it — it is sometimes better

to simply use one of these fixed sets containing commonly useful cliques, than it would be to search

laboriously for the most useful transfer source!

There is one major caveat to these conclusions, however. Because since U3 and U4 were each generated

by combining the common cliques of the four domains, they suffer from the same malady as the results

which were excluded from Table 4.1: the process which constructed them depended on the data from

the same four domains which they were tested on. Thus, it is premature to draw from these results

the conclusion that either U3 or U4 would be truly useful as a source for transfer to a wider range of

domains. Convincing confirmation of this argument will require that they be tested for effectiveness in a

wide variety of domains, beyond the four considered here.

33

4. PRELIMINARY QUESTIONS

34

5

Self-Transfer: DTM as a Structure

Learner

The results of the previous chapter show that, in many cases, much of the effectiveness of deep transfer

may be ascribed to the presence of a few cliques which represent common structural regularities. However,

despite their effectiveness there is no reason to think these common cliques are, by themselves, the optimal

transfer source for any particular target domain. This chapter explores the problem of choosing the best

single-domain source for transfer, and arrives at a method which in almost all cases gives results equalling

or exceeding those of the previous chapter.

The problem of choosing the most appropriate source domain for transfer is a common issue in transfer

learning (Torrey and Shavlik, 2009). One can argue that if a source task is to have any chance of improving

learning performance, it must bear some relation to the target task; it cannot be entirely irrelevant. At

the same time, the knowledge gained through learning in the source task will be more effective if it is

not entirely redundant with the target task, so there ought to be some distinction between the source

and target tasks. Together, these conditions suggest that the best performance gains might be found by

considering source tasks which are closely related, but not identical, to the target task. In fact, it has

been shown within the context of propositional domains that considering a set of closely related tasks

can allow the learning of a more general model (i.e. one less prone to overfitting) than could be learned

by considering any task alone (Caruana, 1997).

Is there any principled way to judge the closeness of the relationship between two learning tasks? In

many cases this is left to intuition, with the general guideline that tasks from the same general domain

tend to be related; for example, the problem of reading John’s handwriting is most likely related to

35

5. SELF-TRANSFER: DTM AS A STRUCTURE LEARNER

the problems of reading Sally, Mark, and Ruth’s handwriting. Unfortunately, this heuristic is often

not applicable when considering potential transfer sources for DTM, because the central premise of deep

transfer is that useful information can be transferred even across across domains which appear to be wildly

different, as long as they share some common second-order structure. Since the brute force approach of

empirically evaluating the performance of all possible transfer cases is clearly undesirable, it is reasonable

to seek out a more practically tractable method for deciding when two domains are similar enough that

transfer from one to the other might be productive.

One such approach might involve pre-computing the highest scoring second-order cliques of every

available dataset. Learning the structure of some domain X, then, would dictate searching for the domain

whose second-order cliques are most similar to those of domain X and simply using that domain as the

source for transfer.

The “catch” to this seemingly straightforward approach is that the domain with cliques most similar

to the cliques of domain X is, of course, domain X itself. If it were to be true in general that sharing

similar second-order cliques indicates a potential for useful transfer, then it would follow immediately that

the most useful source for transfer is generally the target domain itself. This might seem on the surface

to be absurd, since one would expect no new information to be gained by performing transfer from a

domain to itself. However, this chapter argues that not only is this counterintuitive proposition supported

by empirical evidence, but that it can actually provide a compelling explanation for why DTM works as

well as it does. In particular, I argue that the exhaustive search and clique-scoring mechanisms of DTM

function together as a form of MLN structure learning, and that the cross-domain transfer for which

DTM was designed is most properly interpreted as a suboptimal variant of an underlying single-domain

structure learning algorithm.

The first section of this chapter serves to motivate the view of exhaustive search and clique scoring as

a form of structure learning. The second section builds on this to propose two new related algorithms,

CSGL and self-transfer, which perform MLN structure learning within a single domain. The next section

evaluates these algorithms empirically and compares them to both deep transfer and MSL, and the final

section discusses some interesting implications of these results.

5.1 DTM for Structure Learning

It was noted in Chapter 2 that although DTM can extract cliques from any set of formulas in the source

domain, Davis and Domingos (2009) found that the best results came from considering, not the results

36

5.2 The Self-Transfer/CSGL Algorithm

of beam search or other sophisticated structure learning techniques, but a simple exhaustive listing of all

possible clauses in the domain within a maximum length and number of terms. They argue that since the

clique scoring process already suggests the most useful cliques for transfer, there is no additional benefit

in trying to learn a theory in the source domain which would restrict the cliques that are considered for

transfer.

An interesting effect of the use of exhaustive search is that unlike many transfer methods, DTM

performs a qualitatively different sort of learning in the source domain than in the target domain. DTM’s

only interaction with the data of the source domain is through the clique-scoring process, while in the

destination domain it uses a greedy selection process followed by beam search to refine the clauses

produced through transfer. Although the clique scoring process produces a list of second-order cliques,

not a list of first-order formulas as is standard for a structure learning algorithm, the cliques which it

produces do reflect in some sense the structural properties of the source domain. This indicates that

clique scoring is, in itself, performing a sort of structure learning, and that the success of the DTM

algorithm rests in part on the effectiveness of this process.

5.2 The Self-Transfer/CSGL Algorithm

This section proposes a simple modification to DTM, which I refer to as “self-transfer”. As the name

implies, the self-transfer method effectively applies DTM to a single domain as both source and target.

First, the algorithm constructs an exhaustive list of all possible first-order clauses in the domain, up to

some maximum length and number of object variables. These clauses are then abstracted into second-

order cliques and scored via the standard DTM clique-scoring process. The k top-scoring cliques are then

instantiated back into first-order clauses of the domain (i.e. the same domain they were abstracted from).

From this set of clauses, either the “greedy selection” or “greedy selection with refinement” methods can

be used to derive a final set of clauses indicating the structure of the domain. That is, clauses are greedily

selected from the instantiated first-order clauses until no additional clause improves the WPLL, and the

resulting MLN is optionally refined using MSL.

Since the version of the algorithm utilizing only greedy selection (no refinement) does not rely on MSL

or any other existing structure learning algorithms, and yet has the effect of inducing an MLN structure

from the data of the domain, it is reasonable to consider it as a standalone structure learning algorithm.

I will refer to this form of the algorithm as CSGL, or learning through clique scoring and greedy selection.

When a refinement step is used, I will refer to the algorithm as CSGL-R.

37

5. SELF-TRANSFER: DTM AS A STRUCTURE LEARNER

One might expect that using the same domain as both source and target would forfeit some of the

expected benefits of transfer, for example the improved generalization performance which often results

from considering a broader class of related tasks (Caruana, 1997). Surprisingly, this does not appear to

be the case: in our experiments the results of self-transfer were generally comparable to the best results

from DTM. While there may exist circumstances in which cross-domain transfer through DTM is more

effective (e.g. if the target domain has very little data available, or if we wish to learn structure for

many domains using the same source to avoid repeating the clique-scoring process for each domain),

we demonstrate that in many cases the benefits of transfer observed using DTM are achievable through

simple self-transfer.

This observation strongly suggests that much of the fundamental utility of DTM comes, not from

the ability to transfer knowledge between domains, but from the introduction of a new learning process,

namely the process of clique scoring in conjunction with first-order instantiation and greedy selection

(under this interpretation, the common structures explored in Chapter 4 are useful insofar as they tend

to be found in many real-world domains, but the self-transfer approach would be effective even in domains

which do not share those common structures). In fact, we find that clique scoring with greedy selection

(CSGL) alone yields results comparable to MSL.

5.3 Experiments and Results

Both CSGL and CSGL-R were evaluated on the four available datasets and compared to other cases of

deep transfer. In all cases of self-transfer (including both CSGL and CSGL-R), cliques were gathered and

scored using only the training set, not the full dataset. This put these methods at a modest disadvantage

in terms of the quantity of data available during the learning process, since in all other transfer cases

we gathered and scored cliques using all data available from the source domain. That said, within each

domain the cliques which were identified in the three folds of each training set did not differ significantly

from those obtained using the full four folds, with only minor changes in ordering in most cases, so this

is unlikely to have seriously affected the results.

Table 5.1 gives the AUC and CLL for all transfer scenarios using refinement, including self-transfer

results (which are underlined) as well as MSL, which acts as a baseline. Each figure represents an average

over the four different train/test trials. Note that the results for transfer from WebKB and Yeast are

identical. This is because the ten highest-scoring cliques are the same in both domains (see Figure 5.3 for

38

5.3 Experiments and Results

IMDB UW-CSE WebKB Yeast MSL
WorkedInGenre 0.63 0.61 0.61 0.61 0.32
WorkedUnder 0.77 0.23 0.21 0.21 0.03
AdvisedBy 0.08 0.08 0.08 0.08 0.04
Linked 0.01 0.01 0.09 0.09 0.004
PageClass 0.86 0.86 0.68 0.68 0.87
Function 0.34 0.34 0.33 0.33 0.27
Interaction 0.04 0.04 0.10 0.10 0.04

(a) AUC

IMDB UW-CSE WebKB Yeast MSL
WorkedInGenre -0.20 -0.13 -0.37 -0.37 -0.30
WorkedUnder -0.09 -0.17 -0.21 -0.21 -0.23
AdvisedBy -0.03 -0.03 -0.03 -0.03 -0.04
Linked -0.02 -0.02 -0.02 -0.02 -0.02
PageClass -0.07 -0.07 -0.12 -0.12 -0.07
Function -0.18 -0.18 -0.18 -0.18 -0.19
Interaction -0.04 -0.04 -0.03 -0.03 -0.04

(b) CLL

Table 5.1: Results for DTM (with refinement) including self-transfer cases (i.e. CSGL-R), transferring the

top 10 cliques.

a listing of the top cliques in each domain), so deep transfer produces the same theories when transferring

from either domain. Note that the top five cliques are also identical across WebKB and Yeast.

The results in Table 5.1 support the claims of Davis and Domingos, in that DTM improves on MSL

in almost all cases. Examining self-transfer in particular, we see that self-transfer is at least competitive

with other transfer scenarios on all predicates except PageClass (where the deficiency is due to a single

outlier trial, in which refinement of the results from greedy selection led to a large decrease in AUC),

and that in fact it performs significantly better than all other methods in AUC when predicting the

predicate WorkedUnder (paired one-tail t-test, p < 0.05). For no predicate does the best case of cross-

domain transfer perform significantly better, in AUC or CLL, than self-transfer does (paired one-tail

t-test, p > 0.10). This is consistent with our claim that the performance gains of DTM over MSL do not

depend on DTM’s incorporation of source-domain knowledge.

Note that self-transfer generally matches or outperforms other transfer settings despite the limitation

of having only the three folds of the training set from which to identify the top cliques, as opposed to

39

5. SELF-TRANSFER: DTM AS A STRUCTURE LEARNER

CSGL-5 CSGL-10 MSL
WorkedInGenre 0.70 0.63 0.32
WorkedUnder 0.26 0.69 0.03
AdvisedBy 0.04 0.06 0.04
Linked 0.06 0.06 0.004
PageClass 0.86 0.86 0.87
Function 0.31 0.31 0.27
Interaction 0.10 0.10 0.04

(a) AUC

CSGL-5 CSGL-10 MSL
WorkedInGenre -0.16 -0.15 -0.30
WorkedUnder -0.14 -0.11 -0.23
AdvisedBy -0.04 -0.03 -0.04
Linked -0.02 -0.02 -0.02
PageClass -0.07 -0.07 -0.07
Function -0.17 -0.17 -0.19
Interaction -0.03 -0.03 -0.04

(b) CLL

Table 5.2: Results for CSGL (no refinement; transferring the top 5 and top 10 cliques) vs. MSL.

40

5.4 Discussion

Rank IMDB UW-CSE WebKB Yeast
1 r(x,y),r(x,z) r(x,y),r(x,z) r(x,y),r(z,y) r(x,y),r(z,y)
2 r(x,y),r(z,y) r(x,y),r(z,y) r(x,y),r(x,z) r(x,y),r(x,z)
3 r(x,y),r(z,y),s(x,z) r(x,y),r(z,y),s(x,z) r(x,y),r(z,y),s(x,x) r(x,y),r(y,x)
4 r(x,y),r(y,z),r(z,x) r(x,y),r(z,y),s(x,x) r(x,y),r(z,y),s(x,z) r(x,y),r(z,y),s(x,z)
5 r(x,y),r(x,z),s(x,x) r(x,y),r(x,z),s(x,x) r(x,y),r(y,x) r(x,y),r(z,y),s(x,x)
6 r(x,y),r(z,y),s(x,x) r(x,x),s(x,x) r(x,y),r(y,z),r(z,x) r(x,y),r(y,z),r(z,x)
7 r(x,y),s(y,z) r(x,y),s(x,z) r(x,x),r(x,y),r(y,x) r(x,y),r(x,z),r(y,x)
8 r(x,y),r(x,z),s(y,z) r(x,x),s(x,x),t(x,y) r(x,y),r(y,x),s(x,z) r(x,y),r(y,x),s(x,z)
9 r(x,y),s(x,z) r(x,y),s(y,z) r(x,y),r(x,z),r(y,x) r(x,x),r(x,y),r(y,x)
10 r(x,y),r(y,x),r(z,x) r(x,x),s(x,x),t(y,x) r(x,y),r(y,x),r(z,x) r(x,y),r(y,x),r(z,x)

Table 5.3: The top ten cliques in each domain.

using the full four folds of source domain data which are available to the other transfer scenarios. Also

recall that we modified the logical structure of each dataset so that all of its predicates had arity two, thus

giving DTM the greatest possible freedom to transfer structure between all predicates. If we had allowed

the single-arity Student and Professor predicates to remain uncollapsed in the UW-CSE dataset, for

example, then DTM would have been unable to relate them to the analogous PageClass predicate in

WebKB because it has arity two. By contrast, self-transfer generates cliques with arities appropriate to

the predicates of each dataset.

Table 5.2 compares CSGL to MSL as standalone structure learning algorithms, with two versions of

CSGL instantiating the top five and ten highest-scoring cliques respectively. Results from CSGL-5 and

CSGL-10 were generally comparable, although CSGL-10 fared much better when predicting WorkedUnder.

Note that CSGL-10 beats MSL in every case except for the PageClass predicate of WebKB, for which

the two methods give approximately equal results. CGSL-10 also performs comparably to 10-clique self-

transfer in most cases, and substantially better in the case PageClass, indicating that the additional,

costly refinement step required by self-transfer may not be necessary in order to achieve satisfactory

results.

5.4 Discussion

CSGL bears interesting similarities to the LHL algorithm of Kok and Domingos (2009), and particularly

to the unlifted LHL-FindPaths variant, which constructs a knowledge base by viewing the training data as

a hypergraph with constants as nodes and true ground atoms as hyperedges, interpreting the paths in the

41

5. SELF-TRANSFER: DTM AS A STRUCTURE LEARNER

hypergraph as clauses, filtering out the clauses which are not more useful than any of their subclauses,

and selecting greedily from the remaining clauses to optimize the weighted pseudo-log-likelihood (see

Chapter 2.3.2). Like LHL-FindPaths, CSGL is a bottom-up structure learner which constructs clauses

directly from the data, rather than following a top-down search process as MSL does. The exhaustive

search step used by CSGL to generate initial clauses is equivalent to the process in LHL-FindPaths of

enumerating and variabilizing paths in the unlifted hypergraph, except for the added restriction that every

conjunction which LHL-FindPaths considers must have at least one support in the data (by contrast,

recall that CSGL’s exhaustive generation does not examine the data). Both methods evaluate clauses

according to how well they represent structural regularities not found in their sub-clauses; in CSGL this

is implemented by the clique-scoring process in which all but the top-scoring cliques are discarded, while

in LHL this is done by simply discarding any clause having a WPLL less than one of its subclauses. Both

methods consider as candidates many combinations of negated and non-negated atoms in the clauses

that they generate; in CSGL this is part of the clique abstraction and instantiation process, while LHL

explicitly constructs partially-negated variants of its clauses. Finally, both methods arrive at the final

MLN structure by greedily selecting clauses from a list of candidates until no clause further improves the

overall WPLL.

These parallels show a strong sibling resemblance between the two algorithms, and for this reason

it is unlikely that CSGL represents a significant advance in the state of the art for structure learning,

especially since LHL-FindPaths is already itself slow and unwieldy relative to full-fledged, lifted LHL

(unfortunately, time constraints and lack of a portable implementation1 of LHL have thus far prevented

any direct comparison between CSGL and LHL). However, the similarities between CSGL and LHL-

FindPaths do provide strong intuition for understanding CSGL, and therefore DTM, as a structure

learning algorithm.

The structure learning view of CSGL and self-transfer helps to shed light on the results of Chapter

4, and on the performance of DTM in general. If we accept a near-isomorphism between CSGL and

LHL-FindPaths, then the use of DTM for transfer learning can be seen as equivalent to a version of

LHL-FindPaths in which the early stages of the algorithm are run on a potentially suboptimal domain.

As long as there is enough data available in the target domain to represent a reasonable variety of cliques

(and empirically, this appears to have been the case even for our smallest domains, IMDB and UW-CSE),

then there is no obvious reason why we should expect to find any advantage in using another domain

to perform the clique scoring instead. We would also not necessarily expect that any single hard-coded
1Personal communication with Stanley Kok.

42

5.4 Discussion

set of results for these early stages (the equivalent of a universal transfer source) would be superior to

executing them in the proper domain (note, indeed, that self-transfer generally outperforms the transfer

from U3 and U4 considered in the previous chapter). An explanation for the observed successes of DTM,

then, is that it attempts to outperform MSL by mimicking the approach of a more powerful structure

learning algorithm, i.e. LHL. If this explanation is accurate, then we would expect LHL to outperform

even the best instances of deep transfer for the majority of target domains.

In some sense, self-transfer can be viewed as a sort of multi-strategy learning, in which several different

learning mechanisms, i.e. clique-scoring, greedy selection, and MSL-style refinement, combine to produce

results superior to those attainable by any of the individual methods alone. This characterization serves

to explain the apparent dilemma posed in the first section of this chapter: although we would expect a

transfer algorithm to perform at its best when the source domain is related but not identical to the target

domain, this does not seem to be the case for DTM, which we have shown delivers strong performance

when transferring from a domain to itself. The answer is that, as explained above, DTM uses multiple

learning methods on multiple datasets, and these results (DTM performance does not decrease even when

applied to only a single dataset) imply that it is the multiple learning methods, not the multiple datasets,

which are the source of DTM’s effectiveness.

43

5. SELF-TRANSFER: DTM AS A STRUCTURE LEARNER

44

6

Simple Transfer via Second-Order

Formulas

6.1 Alternative Representations for Transfer

The second-order cliques used by DTM are an abstraction of second-order formulas, which are themselves

an abstraction of first-order formulas. The abstraction from first- to second-order is necessary to create

domain-independent knowledge suitable for transfer, since first-order formulas are, by definition, tied to

the particular predicates of the domain they occur in. However, the further abstraction from second-order

formulas to cliques does not carry the same force of clear necessity; while there is an appealing symmetry

between the relationship of second-order formulas to second-order cliques and the relationship of ground

formulas to the cliques of the ground Markov network, DTM does not exploit this symmetry in any deep

way. As a knowledge representation, cliques are also less precise than formulas: the additional level of

abstraction (corresponding to the conversion to clause form and the removal of all negations) prevents

them from capturing the same level of detail about specific structure in the source domain. It is unknown

whether the greater generality of the clique representation is advantageous in general.

A notable disadvantage of the DTM procedure for transferring second-order cliques is that there

does not appear to be any benefit to using standard MLN structure learning algorithms to learn the

structure of the source domain. Davis and Domingos (2009) do consider an MSL-style beam search as a

potential method for selecting source clauses for DTM, but find that because the clique-scoring process

benefits from having a large set of input clauses, there is no use in devoting extra energy to searching

for particularly good ones; a simple exhaustive listing actually delivers better performance. In essence,

45

6. SIMPLE TRANSFER VIA SECOND-ORDER FORMULAS

DTM’s choice of second-order cliques as the main knowledge representation forces it to use the clique-

scoring process as its one and and only method of structure learning in the source domain. It seems,

therefore, that there might be some advantage to a transfer mechanism which eschewed cliques and the

clique-scoring process, and instead used second-order formulas as the primary knowledge representation,

because such a mechanism would have the flexibility to make direct use of any MLN structure learner.

This would effectively reduce the problem of second-order transfer to the problem of structure learning,

thus allowing for automatic improvement in transfer performance as the state of the art in structure

learning progresses.

In this chapter I propose such a mechanism, a Simple Transfer algorithm for Markov logic networks

(STM). Because STM uses second-order formulas as a domain-independent knowledge representation, it

has the advantageous properties described above. Like DTM, STM can be viewed as a form of “deep”

transfer, in that it transfers second-order structural properties and can work across domains containing

different sets of predicates (however, the phrase “deep transfer” should still be taken to refer specifically

to the DTM algorithm unless otherwise noted). The next section of this chapter describes the STM

algorithm, and the third section contains an evaluation of STM in which its performance is compared to

both MSL and DTM.

6.2 The Simple Transfer Algorithm

The simple transfer algorithm consist of four steps, which are illustrated in Figure 6.1:

1. Structure learning in the source domain. Any structure learner can be used to induce an MLN

from the data available in the source domain. The experiments below use a version of MSL, modified

(as per Chapter 3) to learn constant terms for certain predicates. The weights of the resulting MLN

are not used in the transfer process, so theoretically even an ILP system could be used to learn

structure, but an MLN-native system, capable of handling uncertainty and inconsistency, would be

expected to deliver better results. Note that although MSL and other structure-learning algorithms

generally produce MLNs in clausal form (thus, when MSL is used as the source-domain structure

learner, all of the formulas involved in the transfer process are actually clauses), this is not strictly

necessary for STM; STM is capable of transferring arbitrary formulas.

2. Abstraction to second-order logic. The formulas resulting from the structure-learning process

are abstracted directly into second-order logic. The process is similar to that of deep transfer, in

46

6.2 The Simple Transfer Algorithm

Interaction(x,y) Function(x,z) Function(y,z)

r(x,y) q(x,z) q(y,z)

Linked(x,y) HasWord(x,z) HasWord(y,z)
Linked(x,y) PageClass(x,z) PageClass(y,z)

Linked(x,y) PageClass(x,z) PageClass(y,z)

Source­domain first­order formulas:

Abstract second­order formulas:

Target­domain instantiations:

Outcome after greedy selection:

Figure 6.1: A hypothetical transfer from the Yeast Protein to WebKB domain.

that first-order predicates are variabilized on the level of each individual formula. For example,

in r(x,y) the r might refer to multiple different first-order predicates in the context of different

formulas. An additional feature is that terms abstracted from first-order constants are specially

marked so that they can later be re-instantiated with constants. For example, the first-order

formula PageClass(x,Student) =⇒ ¬PageClass(x,Faculty) from the WebKB domain, which

states that students are not faculty members, is abstracted to r(x,+y) =⇒ ¬r(x,+z), where the

‘+’ preceding a variable indicates that any first-order instantiation of the formula should contain a

constant term in that position.

3. Instantiation in the target domain. Because the structure learning mechanism in the source

domain is expected to produce a relatively small set of useful formulas, simple transfer does not

require any mechanism for ranking or otherwise paring down the set of transferred formulas (the

role which clique scoring plays in DTM). Instead, every formula abstracted from the source domain

is instantiated into the target domain. The instantiation consists of all possible assignments of first-

order predicates to the second-order predicate variables which maintain the type-consistency of their

associated terms (e.g. in the formula r(x,y) ∧ r(y,x), the variable r can only be instantiated by

47

6. SIMPLE TRANSFER VIA SECOND-ORDER FORMULAS

a predicate whose first and second arguments are of the same type). As noted in Chapter 3, for each

domain there are certain particular predicates which are marked as being able to take a constant as

one of their terms; only these predicates were considered when instantiating a second-order atom

containing a term marked as representing a constant. In these cases, separate versions of the formula

were instantiated for every possible type-consistent assignment of constants to the appropriate

terms, as well as for the case in which no constants are used. To prevent exponential blowup in

the number of first-order formulas, all second-order formulas with more than three constant-derived

terms were discarded prior to instantiation.

4. Greedy selection and revision (optional). Once instantiated in the target domain, the formulas

undergo the same greedy selection process used by DTM, in which the formulas are selected one

at a time until no further selection improves WPLL. This can be followed up, as in DTM, by an

optional structure refinement process using MSL or any other structure learner capable of refining

an existing MLN.

6.3 Experiments and Results

Tables 6.1 and 6.2 contain the results of evaluating STM from all four source domains, using greedy

selection and greedy selection with refinement, respectively, to instantiate formulas in the target domains

(for convenience, we will use STM-R to refer to the version of the algorithm which uses a refinement

step, and STM-G to refer specifically to the version which does not). Cases of self-transfer are included.

MSL is used as the source-domain structure learner; thus, the source-domain MLN is in clausal form.

The STM algorithm is compared to MSL and DTM; the DTM results are for the best non-self-transfer

case, transferring the top 10 cliques and using either greedy selection (DTM-G) or greedy selection with

refinement (DTM-R), as appropriate for each table.1

The presence or absence of a refinement step appears to have a large impact on the observed perfor-

mance of STM. Without refinement, STM-G outperforms MSL in terms of AUC in four of the twenty-one

cases of transfer from an external source (i.e. cases which are not self-transfer), but MSL outperforms

STM-G in ten additional cases. The algorithms are roughly equal (unrounded AUC within 0.005) in the

seven remaining cases. The difference between the algorithms is significant in two cases, in each of which

1Here I use DTM-G and DTM-R to refer to the versions of the deep transfer algorithm which perform greedy selection

and greedy selection with refinement, respectively. Note that the CSGL algorithm of Chapter 5 is a special case of DTM-G,

while CSGL-R is the corresponding special case of DTM-R.

48

6.3 Experiments and Results

Domain Predicate IMDB UW-CSE WebKB Yeast DTM-G (Best) MSL
IMDB WorkedInGenre 0.46 0.61 0.61 0.07 0.61 0.32
IMDB WorkedUnder 0.09 0.25 0.03 0.03 0.22 0.03
UW-CSE AdvisedBy 0.01 0.04 0.05 0.01 0.06 0.04
WebKB Linked 0.002 0.002 0.002 0.002 0.06 0.004
WebKB PageClass 0.16 0.16 0.16 0.87 0.87 0.87
Yeast Protein Function 0.18 0.18 0.37 0.35 0.32 0.27
Yeast Protein Interaction 0.01 0.01 0.01 0.01 0.10 0.04

(a) AUC

Domain Predicate IMDB UW-CSE WebKB Yeast DTM-G (Best) MSL
IMDB WorkedInGenre -0.38 -0.13 -0.13 -0.30 -0.13 -0.30
IMDB WorkedUnder -0.70 -0.08 -0.14 -0.14 -0.17 -0.23
UW-CSE AdvisedBy -0.05 -0.04 -0.05 -0.05 -0.03 -0.04
WebKB Linked -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
WebKB PageClass -0.23 -0.23 -0.10 -0.09 -0.07 -0.07
Yeast Protein Function -0.19 -0.19 -0.16 -0.16 -0.17 -0.19
Yeast Protein Interaction -0.04 -0.04 -0.04 -0.04 -0.03 -0.04

(b) CLL

Table 6.1: Results for STM with greedy selection (STM-G), including self-transfer cases.

MSL outperforms STM-G (paired two-tail t-test, p < 0.05). Although STM-G sometimes produces very

competent outcomes, these results suggest that it does not in general improve on the performance of

standard structure learning within the target domain.

Once the refinement step is added, however, STM-R outperforms MSL (in terms of AUC) in eleven of

the twenty-one non-self-transfer cases, while MSL outperforms STM-R in only three cases, and the two

are roughly equal in the seven remaining cases. The difference between STM-R and MSL is significant

(paired two-tail t-test, p < 0.05) in four cases, all of which favor STM-R. This implies that refinement

provides a significant boost to the performance of simple transfer. We can interpret the process of transfer

with refinement as specifying a particular starting point for the MSL beam search, and because STM-R

generally outperforms MSL, this suggests that the transfer process is often providing useful information.

Of course, the more interesting benchmark is how well STM compares to DTM. To ascertain this, I

compare performance of STM to the results of Chapter 5. If we allow both algorithms to refine their

transferred theories, then, comparing case-by-case, STM-R outperforms DTM-R in terms of AUC in ten

of twenty-one cases, DTM-R outperforms STM-R in another ten cases, and in the one remaining case

49

6. SIMPLE TRANSFER VIA SECOND-ORDER FORMULAS

Domain Predicate IMDB UW-CSE WebKB Yeast DTM-R (Best) MSL
IMDB WorkedInGenre 0.36 0.61 0.55 0.37 0.61 0.32
IMDB WorkedUnder 0.09 0.31 0.40 0.25 0.23 0.03
UW-CSE AdvisedBy 0.04 0.06 0.05 0.11 0.08 0.04
WebKB Linked 0.002 0.002 0.03 0.01 0.09 0.004
WebKB PageClass 0.87 0.87 0.87 0.86 0.86 0.87
Yeast Protein Function 0.35 0.36 0.43 0.39 0.34 0.27
Yeast Protein Interaction 0.03 0.02 0.05 0.02 0.1 0.04

(a) AUC

Domain Predicate IMDB UW-CSE WebKB Yeast DTM-R (Best) MSL
IMDB WorkedInGenre -0.22 -0.13 -0.17 -0.25 -0.13 -0.30
IMDB WorkedUnder -0.26 -0.11 -0.19 -0.20 -0.17 -0.23
UW-CSE AdvisedBy -0.04 -0.03 -0.03 -0.03 -0.03 -0.04
WebKB Linked -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
WebKB PageClass -0.07 -0.07 -0.08 -0.07 -0.07 -0.07
Yeast Protein Function -0.16 -0.16 -0.16 -0.16 -0.18 -0.19
Yeast Protein Interaction -0.04 -0.04 -0.04 -0.04 -0.03 -0.04

(b) CLL

Table 6.2: Results for STM with greedy selection and refinement (STM-R), including self-transfer cases.

50

6.3 Experiments and Results

they perform roughly equally. None of these differences are significant (paired two-tail t-test, p > 0.05).

If the refinement step is omitted, then DTM-G wins against STM-G in eleven cases (ten of which are

significant), STM-G wins in four cases (one if which is significant), and the two are roughly equal in

the remaining six cases. For three of the seven predicates tested (namely WorkedUnder, AdvisedBy,

and Function), the best case of STM-R transfer produced an AUC higher than the best case of DTM-

R (though the difference was significant only for the Function predicate). The best cases of the two

algorithms were roughly equal on another two predicates (WorkedInGenre and PageClass), while the

best case of DTM-R outperformed STM-R on the remaining two predicates (Linked and Interaction),

although for neither of those two predicates was the difference significant.

The comparison of STM-R to DTM-R shows that given a refinement step, STM is competitive with

DTM, and in fact sometimes outperforms it, though (as can be seen from the tables) its performance also

varies much more widely across different source domains than does DTM’s. Interestingly, the refinement

step seem to be much more necessary for STM than it is for DTM; without refinement, the overall

performance of STM drops much more sharply than does that of DTM. This is probably because the set

of formulas instantiated by STM is generally much smaller than the set of clauses instantiated by DTM

(given ten cliques of up to eight features each, our version of DTM might transfer the equivalent of up to

eighty second-order clauses, while in these experiments STM never transferred more than seven clauses),

so it works better as a starting point for refinement than as a source for greedy selection.

Examining cases of STM self-transfer shows that that self-transfer under STM-R surpasses the per-

formance of MSL for almost every predicate (Interaction is the sole exception). This implies that

the extra step of abstracting and reinstantiating the formulas produced by MSL in the source domain

allowed MSL to continue refining them to produce superior results, presumably because it forced MSL

to consider a superset of the original formulas which included all formulas having similar structure. This

suggests that MSL might be improved by the addition of a periodic step which performed this sort of

abstraction/reinstantiation. Although the boost provided by the abstraction/reinstantiation process may

also have been a factor in other (non self-transfer) cases of simple transfer, note that under both STM-G

and STM-R, self-transfer is rarely as effective as the most effective source of external transfer, and often

it is much less effective. This is the opposite of the findings of the last chapter with respect to DTM, and

I interpret this as a sign that STM with external transfer is, indeed, successfully incorporating knowledge

from the source domain.

51

6. SIMPLE TRANSFER VIA SECOND-ORDER FORMULAS

6.4 Discussion

The STM algorithm was motivated in part by questions about the clique representation used by DTM, in

particular whether its additional level of abstraction leads to better results or simply throws away useful

information. These results show that the clique representation is at least not obviously inferior to the more

specific second-order formula representation used by STM, since DTM-G significantly outperforms STM-

G in the majority of cases. Although STM-G works quite well in a few situations, DTM-G delivers more

consistently strong performances, perhaps due to the generality of the clique representation (although,

as explored in Chapter 4, the general properties represented by a set of cliques are not necessarily

tied very strongly to the source domain). It is only after the refinement step that STM is competitive

with DTM. Because each clique implicitly represents a larger and much more general set of first-order

clauses than a second-order formula would (since each clique has many different states, each of which is

in itself equivalent to a different second-order clause), this suggests that part of the value of the clique

representation is that the use of cliques can save significant time during the transfer process: it is possible

to obtain good results simply by selecting from the set of instantiated clauses, without needing to engage

in a costly refinement process.

On the other hand, our implementation of STM uses only MSL as the source-domain structure learn-

ing, while DTM uses a combination of exhaustive search and clique scoring. Since I showed in Chapter

5 that the latter approach has an advantage over MSL for most of the predicates tested, this gives the

clique representation something of an unfair advantage: it is being paired with a more effective structure

learner than is the formula representation used by STM. It is certainly conceivable that a version of STM

which used LHL or a similar algorithm as the source-domain structure learner would deliver improved

performance, although it has not been possible to test this possibility for this thesis. Since we have

seen that STM-R outperforms MSL, its base structure learner, in many cases, it would be interesting to

investigate whether it is generally true that any given version of STM will (for some reasonable choice of

source domain) outperform the base structure learning algorithm it is constructed from. If so, this would

give STM significant advantages over DTM in the future, since the development of increasingly effective

structure learning algorithms would only boost the performance of STM.

52

7

Conclusions and Future Work

This thesis has explored a variety of methods for structure and transfer learning in Markov logic networks,

focusing on modifications to the deep transfer algorithm of Davis and Domingos (2009). I began by ex-

ploring possibilities for transfer from multiple sources, concluding that there was no significant advantage

for multiple-source transfer over single-source transfer on the domains considered. In my observations of

the top cliques of four different domains, I confirmed that there was significant overlap (as suggested by

Davis and Domingos (2009)), raising the possibility that there might be a set of cliques which represent

near-universally useful sources for transfer. I used two different methods to construct sets of cliques which

were highly ranked in most or all of the domains under consideration, and evaluated them as sources for

transfer, finding that both were often competitive with the best cases of transfer from a specific domain.

Since these results did show, however, that the choice of source domain does make a difference when

performing deep transfer (and in many cases the best individual domain outperformed both sets of

common cliques), I proposed a novel approach which sidesteps the problem of finding the best source

domain. Specifically, I hypothesized that the cliques of the target domain itself ought to function as

effective sources for transfer and then showed empirically that this method of “self-transfer” performs

generally as well as transfer from the best external sources. These results led me to argue that DTM self-

transfer constitutes a novel method for standalone MLN structure learning. I showed that this method

bears many similarities to LHL, an existing state-of-the art structure learning technique, and concluded

that the deep transfer algorithm may be most naturally interpreted as a form of multi-strategy structure

learning, rather than as an algorithm for knowledge transfer.

Finally, I proposed simple transfer, a new algorithm for transfer learning in Markov logic networks

which makes use of existing MLN structure learners in both the source and target domains. The STM

53

7. CONCLUSIONS AND FUTURE WORK

algorithm transfers a more specific form of structure than does DTM, and exceeds the performance of

DTM in a variety of cases, though it performs less well in many other cases. Because it uses an external

structure learner, STM also has the potential to improve its performance as new algorithms for structure

learning are developed.

7.1 Future Work

Several obvious directions for additional work involve expanding on the experiments in this thesis. How ef-

fective are U3 and U4 as transfer sources for domains other than the four from which they were generated?

Does the performance of STM improve when using a more sophisticated structure learning algorithm (e.g.

LHL) in the source domain? These questions are motivated in Chapters 4 and 6, respectively.

Another goal for future research would be to search for circumstances under which cross-domain

transfer might still be beneficial under DTM. One such case might occur when trying to learn quickly

given very little data in the target domain, which is a traditional strength of transfer learning. This

particular task, however, has already seen more specialized algorithms devoted to it (e.g. Mihalkova and

Mooney (2009)), so it may not constitute a compelling justification for DTM.

Other directions might include identifying other transfer learning mechanisms for which a similar

self-transfer “trick” could be applied to produce improved within-task learning performance, and also

further exploring the connection between clique scoring and hypergraph pathfinding. Given their strong

similarities, would it be possible to integrate the most sophisticated elements of CSGL (e.g. the clique-

scoring process) with those of LHL (e.g. hypergraph lifting through clustering), combining the most

effective elements of each to create a better overall method for structure learning?

A final opportunity for future work is inspired by a particular weakness which is notably shared by

all existing algorithms for transfer learning in MLNs, including STM, DTM, and TAMAR. Specifically,

each of these algorithms depends strongly on the surface logical form of the datasets they are asked to

perform transfer between; none of which are capable of making the appropriate connections between a

dataset representing web page class with a two-arity predicate, e.g. PageClass(page,pclass) (this is the

approach taken by WebKB in this thesis), and one which represents the same concept as a set of single-

arity predicates StudentPage(page), CoursePage(page), etc., even though the two forms are logically

equivalent. Similarly, they are unable to relate the TaughtBy(course,person,quarter) predicate, which

appears in some versions of the UW-CSE data, to the TaughtBy(course,person) predicate used in this

thesis, although the two might be expected to behave similarly in many cases. This property does not

54

7.1 Future Work

prevent them from performing well in many cases — especially on the datasets used for this thesis, which

were modified especially to minimize these concerns — but it does suggest that, at least in some sense,

neither STM, DTM, nor TAMAR is really getting at the essence of the matter. An effective MLN transfer

algorithm ought to be invariant to any particular choice of logical representation, if only because there

is no guarantee that real-world datasets from different sources will make the same decisions as to which

representations to use. Future research might be able to develop a transfer learner which is less sensitive

to these distinctions.

55

7. CONCLUSIONS AND FUTURE WORK

56

Appendix A

Learned MLNs

This appendix contains examples of the clauses and weights learned by MSL and CSGL for each of the

four domains discussed in this thesis. Each table gives the MLN which was learned by training on the

first three folds of the specified dataset, using the specified algorithm.

57

A. LEARNED MLNS

A.1 IMDB

Weight Formula
-5.04788 workedUnder(a1,a2)

-0.000892385 genre(a1,a2)

-7.4258e-05 workedUnder(a1,a1)

0.589336 ¬role(a1,Actor) ∨ genre(a1,a2) ∨ ¬genre(a1,a3) ∨ ¬genre(a4,a3)
-0.0375249 genre(a1,a2) ∨ genre(a3,a2) ∨ ¬genre(a1,a4) ∨ ¬genre(a3,a4)
0.00112482 genre(a1,a2) ∨ genre(a3,a4) ∨ ¬genre(a1,a5) ∨ ¬genre(a3,a2)
0.0082254 genre(a1,a2) ∨ genre(a3,a2) ∨ ¬genre(a1,a4) ∨ ¬genre(a3,a5)
0.0106387 ¬role(a1,Actor) ∨ genre(a1,a2) ∨ ¬genre(a1,a3) ∨ ¬genre(a1,a4) ∨ ¬genre(a5,a3)
3.16416 ¬role(a1,Actor) ∨ genre(a1,a2) ∨ genre(a3,a4) ∨ ¬genre(a1,a5) ∨ ¬genre(a3,a5)
0.235249 ¬workedUnder(a1,a1) ∨ genre(a1,a2) ∨ genre(a1,a3) ∨ ¬genre(a1,a4) ∨ ¬genre(a5,a4)

Table A.1: Cliques learned using MSL on the first three folds of the IMDB dataset.

Weight Formula
-0.983939 genre(a1,a2)

-1.84027 workedUnder(a1,a2)

7.88469 ¬workedUnder(a1,a2) ∨ ¬role(a2,Actor)
6.13453 ¬role(a1,Actor) ∨ ¬genre(a1,a2)
3.12152 ¬workedUnder(a1,a2) ∨ ¬genre(a1,a3)
1.07589 ¬workedUnder(a1,a2) ∨ ¬workedUnder(a1,a3)
-5.67677 ¬workedUnder(a1,a2) ∨ ¬movie(a3,a1) ∨ ¬movie(a3,a2)

Table A.2: Cliques learned using CSGL on the first three folds of the IMDB dataset.

58

A.2 UW-CSE

A.2 UW-CSE

Weight Formula
-4.13795 advisedBy(a1,a2)

-0.0689903 advisedBy(a1,a1)

-2.37679 personlevel(a1,Student)

2.37679 personlevel(a1,Prof)

-1.98876 advisedBy(a1,a2) ∨ personlevel(a1,Student) ∨ ¬personlevel(a2,a3)
-2.73012 advisedBy(a1,a2) ∨ inPhase(a2,a3) ∨ personlevel(a2,Prof) ∨ ¬personlevel(a2,Student)

Table A.3: Cliques learned using MSL on the first three folds of the UW-CSE dataset.

Weight Formula
0.271905 advisedBy(a1,a2)

0.957868 personlevel(a1,Student)

-0.631464 personlevel(a1,Prof)

-8.3145 personlevel(a1,a2) ∨ ¬personlevel(a1,a3)
4.36165 ¬advisedBy(a1,a2) ∨ ¬personlevel(a2,Student)
2.05605 ¬advisedBy(a1,a2) ∨ inPhase(a1,a3)

Table A.4: Cliques learned using CSGL on the first three folds of the UW-CSE dataset.

59

A. LEARNED MLNS

A.3 WebKB

Weight Formula
3.10087 PageClass(a1,Person)

-3.88424 PageClass(a1,ResearchProject)

-2.65059 PageClass(a1,Course)

-6.953 PageClass(a1,Staff)

-6.93197 PageClass(a1,Faculty)

-6.86145 PageClass(a1,Student)

-3.32053 PageClass(a1,Department)

-7.09801 Linked(a1,a2)

-3.54712 PageClass(a1,Course) ∨ ¬PageClass(a1,Person)
2.86116 PageClass(a1,a2) ∨ PageClass(a1,Staff) ∨ PageClass(a1,Faculty) ∨ PageClass(a1,Student) ∨ ¬PageClass(a1,Person)

Table A.5: Cliques learned using MSL on the first three folds of the WebKB dataset.

60

A.4 Yeast Protein

Weight Formula
-2.31374 PageClass(a1,Student)

-1.59818 Linked(a1,a2)

3.38395 PageClass(a1,Person)

-3.88284 PageClass(a1,ResearchProject)

-2.23963 PageClass(a1,Faculty)

1.15867 PageClass(a1,Staff)

-3.3067 PageClass(a1,Department)

-2.86408 PageClass(a1,Course)

11.0142 PageClass(a1,Person) ∨ ¬PageClass(a1,Student)
8.40782 PageClass(a1,Person) ∨ ¬PageClass(a1,Staff)
-6.44947 PageClass(a1,Staff) ∨ ¬PageClass(a1,Student)
7.97889 ¬PageClass(a1,Student) ∨ ¬PageClass(a1,Faculty)
-4.94361 PageClass(a1,Staff) ∨ ¬PageClass(a1,Faculty)
-9.29807 PageClass(a1,Person) ∨ PageClass(a1,Faculty)

-2.91168 Linked(a1,a2) ∨ Linked(a2,a1)

Table A.6: Cliques learned using CSGL on the first three folds of the WebKB dataset.

A.4 Yeast Protein

61

A. LEARNED MLNS

Weight Formula

-4.50674 function(a1,Func id 1001003)

-1.08985 function(a1,Func id 1)

-4.63587 function(a1,Func id 38)

-2.98542 function(a1,Func id 10001009)

-4.16601 function(a1,Func id 16021)

-1.39615 function(a1,Func id 42)

-4.06702 function(a1,Func id 20009016009)

-2.96655 function(a1,Func id 40)

-3.88858 function(a1,Func id 41001)

-1.95007 function(a1,Func id 11)

-4.44516 function(a1,Func id 1001006)

-2.00657 function(a1,Func id 32)

-4.70347 function(a1,Func id 32005)

-2.03155 function(a1,Func id 20001)

-4.99425 function(a1,Func id 40010002002)

-0.973373 function(a1,Func id 16)

-4.99425 function(a1,Func id 42027)

-2.40035 function(a1,Func id 12)

-4.9185 function(a1,Func id 1005001007)

-4.63587 function(a1,Func id 18001)

-4.99425 function(a1,Func id 1025)

-2.37792 function(a1,Func id 34011)

-4.9185 function(a1,Func id 30005002)

-1.69151 function(a1,Func id 11002)

-4.84478 function(a1,Func id 43001002)

-0.995262 function(a1,Func id 10)

-4.9185 function(a1,Func id 36020035)

-2.66548 function(a1,Func id 18002)

-4.99425 function(a1,Func id 1001009001)

-3.5056 function(a1,Func id 34)

-4.99425 function(a1,Func id 1001011003)

-1.35941 function(a1,Func id 20)

-4.84478 function(a1,Func id 1001011004)

-2.73819 function(a1,Func id 2)

-4.99425 function(a1,Func id 1001003001)

-2.35629 function(a1,Func id 43001003)

-4.99425 function(a1,Func id 1001005)

-3.62951 function(a1,Func id 20009018009)

-6.19855 interaction(a1,a2)

-1.03535 function(a1,Func id 14)

0.366821 interaction(a1,a1)

-2.55746 function(a1,Func id 30)

6.56858 function(a1,Func id 99)

4.79196 ¬function(a1,a2) ∨ ¬function(a1,Func id 99)

-3.82411 ¬function(a1,Func id 42) ∨ ¬function(a1,Func id 40) ∨ ¬function(a1,Func id 43001003)

Table A.7: Cliques learned using MSL on the first three folds of the Yeast Protein dataset.

62

A.4 Yeast Protein

Weight Formula

-4.81153 function(a1,Func id 38)

-1.31397 function(a1,Func id 1)

-4.36002 function(a1,Func id 16021)

-3.15925 function(a1,Func id 10001009)

-4.2321 function(a1,Func id 20009016009)

-1.3001 function(a1,Func id 42)

-4.06321 function(a1,Func id 41001)

0.165813 function(a1,Func id 40)

-4.64761 function(a1,Func id 1001006)

-2.14493 function(a1,Func id 11)

-4.85751 function(a1,Func id 32005)

-2.20462 function(a1,Func id 32)

-5.19631 function(a1,Func id 40010002002)

-0.463194 function(a1,Func id 20001)

-5.18921 function(a1,Func id 42027)

-0.984035 function(a1,Func id 16)

-5.12105 function(a1,Func id 1005001007)

-2.58208 function(a1,Func id 12)

-5.19041 function(a1,Func id 1025)

-4.84094 function(a1,Func id 18001)

-5.10948 function(a1,Func id 30005002)

-0.171735 function(a1,Func id 34011)

-5.05663 function(a1,Func id 43001002)

-4.69674 function(a1,Func id 1001003)

-5.12781 function(a1,Func id 36020035)

-1.26076 function(a1,Func id 14)

-5.1708 function(a1,Func id 1001009001)

1.00096 function(a1,Func id 43001003)

-5.20785 function(a1,Func id 1001011003)

-1.35228 function(a1,Func id 99)

-5.01548 function(a1,Func id 1001011004)

-3.78893 function(a1,Func id 20009018009)

-5.21235 function(a1,Func id 1001003001)

-0.45604 function(a1,Func id 30)

-5.19631 function(a1,Func id 1001005)

-1.8933 function(a1,Func id 11002)

-1.24337 interaction(a1,a2)

-2.84769 function(a1,Func id 18002)

-2.92405 function(a1,Func id 2)

-1.22411 function(a1,Func id 10)

0.784473 function(a1,Func id 20)

-3.6696 function(a1,Func id 34)

-3.77977 function(a1,Func id 40) ∨ function(a1,Func id 43001003)

-2.61367 interaction(a1,a2) ∨ interaction(a2,a1)

-2.85907 function(a1,Func id 34011) ∨ function(a1,Func id 30)

-2.82638 function(a1,Func id 20001) ∨ function(a1,Func id 20)

3.19944 ¬function(a1,Func id 16) ∨ ¬function(a1,Func id 99)

Table A.8: Cliques learned using CSGL on the first three folds of the Yeast Protein dataset.

63

A. LEARNED MLNS

64

References

Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, pages 179–195. 14

Biba, M., Ferilli, S., and Esposito, F. (2008). Structure learning of Markov logic networks through iterated

local search. In Proceedings of the 18th European Conference on Artificial Intelligence (ECAI-08), pages

361–365, Amsterdam, The Netherlands. IOS Press. 3, 17

Caruana, R. (1997). Multitask learning. Machine Learning, 28:41–75. 35, 38

Craven, M. and Slattery, S. (2001). Relational learning with statistical predicate invention: Better models

for hypertext. Machine Learning, 43(1-2):97–119. 25

Davis, J. and Domingos, P. (2009). Deep transfer via second-order Markov logic. In Proceedings of the

26th International Conference on Machine Learning (ICML-09), Montreal, Quebec. 3, 14, 17, 20, 21,

22, 24, 25, 27, 28, 30, 31, 36, 39, 45, 53

Domingos, P., Kok, S., Poon, H., Richardson, M., and Singla, P. (2006). Unifying Logical and Statistical

AI. AAAI-06, pages 2–7. 17

Domingos, P. and Lowd, D. (2009). Markov Logic: An Interface Layer for Artificial Intelligence. Morgan

& Claypool. 14

Getoor, L. and Taskar, B. (2007). Introduction to statistical relational learning. The MIT Press. 3

Kok, S. and Domingos, P. (2005). Learning the structure of Markov logic networks. In Proceedings of

the 21st International Conference on Machine Learning (ICML-05), pages 441–448. 3, 14, 15, 16, 24

Kok, S. and Domingos, P. (2009). Learning Markov logic network structure via hypergraph lifting. In

Proceedings of the 26th International Conference on Machine Learning (ICML-09), Montreal, Quebec.

3, 5, 16, 25, 41

65

REFERENCES

Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., and Domingos, P. (2009).

The Alchemy System for Statistical Relational AI. http://alchemy.cs.washington.edu. Technical

Report, Department of Computer Science and Engineering, University of Washington, Seattle, WA. 23

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and Applications. Ellis

Horwood, New York. 2

Lowd, D. and Domingos, P. (2007). Efficient weight learning for markov logic networks. In PKDD 2007:

Proceedings of the 11th European conference on Principles and Practice of Knowledge Discovery in

Databases, pages 200–211, Berlin, Heidelberg. Springer-Verlag. 14

Mewes, H. W., Frishman, D., Gildener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., Morgenstern, B.,

Minsterktter, M., Rudd, S., and Weil, B. (2002). Mips: a database for genomes and protein sequences.

Nucleic Acids Res, 30:31–34. 25

Mihalkova, L., Huynh, T., and Mooney, R. J. (2007). Mapping and revising Markov logic networks for

transfer learning. In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-22),

pages 608–614. 22

Mihalkova, L. and Mooney, R. (2009). Transfer learning from minimal target data by mapping across

relational domains. In Proceedings of the Twenty-first International Joint Conference on Artificial

Intelligence (IJCAI-09). 22, 54

Mihalkova, L. and Mooney, R. J. (2007). Bottom-up learning of Markov logic network structure. In

Proceedings of the 24th International Conference on Machine Learning (ICML-07), pages 625–632,

New York, NY, USA. ACM. 3, 17, 25

Mihalkova, L. S. (2009). Learning with Markov Logic Networks. PhD thesis, University of Texas, Austin.

v, 9, 11, 13, 14

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation ranking: Bringing

order to the web. 1

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan

Kaufmann. 3, 8, 10

Raedt, L. D. and Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26:99–146. 17

66

http://alchemy.cs.washington.edu

REFERENCES

Richards, B. and Mooney, R. (1992). Learning Relations by Pathfinding. In Proceedings of the Tenth

National Conference on Artificial Intelligence (AAAI-92), San Jose, CA. 17

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2):107–136.

3, 8, 9, 10, 11, 13, 23, 25

Thrun, S. and Mitchell, T. M. (1995). Learning one more thing. In International Joint Conference on

Artificial Intelligence, volume 14, pages 1217–1225. 17

Torrey, L. and Shavlik, J. (2009). Transfer learning. In Soria, E., Martin, J., Magdalena, R., Martinez,

M., and Serrano, A., editors, Handbook of Research on Machine Learning Applications. IGI Global. 3,

17, 35

Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation,

8(7):1341–1390. 30

67

	List of Tables
	Glossary
	1 Introduction
	1.1 Markov Logic Networks
	1.2 Deep Transfer
	1.3 Motivation and Goals
	1.4 Contributions and Organization

	2 Background and Related Work
	2.1 Logic and Terminology
	2.2 Markov Logic Networks
	2.2.1 Interpretation as Markov Networks
	2.2.2 Inference

	2.3 Learning in MLNs
	2.3.1 MSL
	2.3.2 LHL
	2.3.3 Others

	2.4 Deep Transfer in Markov Logic Networks
	2.4.1 Clique Evaluation
	2.4.2 Performing Transfer
	2.4.3 Sources of Transfer
	2.4.4 Other Transfer Methods for MLNs

	3 Domains and Methods
	3.1 Methods
	3.2 Domains and Datasets

	4 Preliminary Questions
	4.1 Transfer from Multiple Sources
	4.1.1 Experiments and Results
	4.1.2 Discussion

	4.2 Universal Transfer
	4.2.1 Experiments and Results
	4.2.2 Discussion

	5 Self-Transfer: DTM as a Structure Learner
	5.1 DTM for Structure Learning
	5.2 The Self-Transfer/CSGL Algorithm
	5.3 Experiments and Results
	5.4 Discussion

	6 Simple Transfer via Second-Order Formulas
	6.1 Alternative Representations for Transfer
	6.2 The Simple Transfer Algorithm
	6.3 Experiments and Results
	6.4 Discussion

	7 Conclusions and Future Work
	7.1 Future Work

	A Learned MLNs
	A.1 IMDB
	A.2 UW-CSE
	A.3 WebKB
	A.4 Yeast Protein

	References

