
Overview
• Widely	used	probabilistic	models	(matrix	factorization,	VAEs)	contain	
parameter	symmetries that	cause	approximate	inference	to	underfit.	

• We	model	this	effect	by	fitting	an	explicitly	symmetrized approximate	
posterior.

• Initial	results	show	that	this	improves	predictions	and	avoids	
underfitting.	

Approximate	Inference	->	Implicit	Regularization
Intuition:	larger	models	should	better	fit	/	capture	structure	in	data.
Observation:	in	practice,	variational autoencoders refuse	to	use	extra	
hidden	units	(“component	collapse”).
Theory:	can	show	that	variational matrix	factorization	(linear	analogue	of	
VAEs)	ignores	extra	hidden	units,	shrinks	small	singular	values	to	zero.	
(Nakajima	et	al.,	2013)	

This	unwanted	(implicit)	regularization	is	caused	by	approximate	inference	
– it	is	not	present	in	the	true	Bayesian	posterior!

Illustration:	regularization	from	signflip symmetry
Bayesian	scalar	factorization:
u,	v	~	N(0,1)

ε ~	N(0,1)
observed:	r		=	uv +	ε

symmetry:	p(u,v|r)	=	p(-u,-v|r)	
task: predict	true	“rating”	uv

Naïve	VI Symmetrized	VI

MAP	and	naïve	VI	predictions	are	
pulled	towards	zero	by	the	
opposite-sign	mode.	Symmetrized	
predictions	follow	the	true	Bayes	
predictive	mean.

r	=	3.0

r	=	1.5

r	=	1.0

General	rotation	symmetry
Bayesian	matrix	factorization:
R =	UVT +		ε =	(UT)(VT)T	+		ε

Invariant	to	transformation	by	any	T s.t. T(TT)	=	I,	i.e.,	orthogonal	transformations.	

Can	visualize	in	(overparameterized)	case	U,V	∈ ℝ"×$:

Naïve	MAP/VI	solutions	are	(again)	shrunk	towards	zero.	The	
symmetrized	solution	avoids	shrinkage	by	implicitly	modeling	a	
continuous	Gaussian	mixture	around	the	unit	circle.	

Naïve	VI Symmetrized	VI

Modeling	posterior	symmetries	
allows	inference	to	use	the	full	
model	capacity	(all	20	traits)

Leads	to	improved	predictive	
accuracy	(recovering	“true”	
noise-free	ratings	UVT)

Future/ongoing	work:	
• Extension	to	nonisotropic Gaussian	q*.
• Other	expressive	posterior	classes	(normalizing	flows,	autoregressive,	

particle-based).
• Other	symmetry	groups:	permutation	(“label	switching”),	translation,	

scaling.
• Stochastic/minibatch inference,	application	to VAEs.	

Simulations	on	40	x	40	matrices	with	20	latent	traits:

References
Butler,	R.	W.	and	Wood,	A.	T.	(2003).	Laplace	approximation	for	Bessel	functions	of	matrix	argument.
Journal	of	Computational	and	Applied	Mathematics,	155(2):359–382.
Nakajima,	S.,	Sugiyama,	M.,	Babacan,	S.	D.,	and	Tomioka,	R.	(2013).	Global	analytic	solution	of	fully-observed	
variational Bayesian	matrix	factorization.	Journal	of	Machine	Learning	Research,	14(Jan):1–37.

Symmetrizing	the	column	space	of	an	elementwise	Gaussian	
matrix	over	the	orthogonal	group	yields	a	continuous	mixture	of	
Gaussians:

which	decomposes	as

Taking	

where	the	hypergeometric	function	0𝐹"	depends	only	on	singular	values	
of	A and	can	be	efficiently	Laplace-approximated	(Butler	&	Wood,	2003).

Intuitively,	the	symmetrized	KL	correction	encourages	nonzero	singular	
values	and	low	nullspace dimension	in	the	mean	matrix	M.

Orthogonally	symmetrized	Gaussians

,	this	simplifies	to	

vanishes	for	isotropic	Σ

Symmetrized	Posteriors
Classic	VI:	fit	approximate	posterior	q	by	minimizing	KL[q	|	p],	equivalent	
to	maximizing	an	evidence	lower	bound	(ELBO)

Given	base	posterior	q*,	we	define	the	symmetrized	posterior	𝑞* as	a	
uniform	mixture	under	transformations	from	group	G:

Sampling	interpretation:	first	draw	z*	~	q*,	then	apply	a	(uniformly	
chosen)	random	transformation	to	sample		z	=	Tz*.	

The	symmetrized	posterior	𝑞* matches	symmetries	of the	true	posterior;	
yields	a	tighter	evidence	bound:

To	apply:	need	to	compute/approximate	𝐾𝐿 	𝑞∗ 𝑞*] for	specific	symmetry	
group.	Can	do	this	for	Gaussian	q*	under	orthogonal	group	O(k),	
matching	matrix	factorization/VAE	symmetries.	
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